Suppr超能文献

基于残差深度学习的多类乳腺组织病理图像分类。

Classification of Multiclass Histopathological Breast Images Using Residual Deep Learning.

机构信息

Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt.

出版信息

Comput Intell Neurosci. 2022 Oct 10;2022:9086060. doi: 10.1155/2022/9086060. eCollection 2022.

Abstract

Pathologists need a lot of clinical experience and time to do the histopathological investigation. AI may play a significant role in supporting pathologists and resulting in more accurate and efficient histopathological diagnoses. Breast cancer is one of the most diagnosed cancers in women worldwide. Breast cancer may be detected and diagnosed using imaging methods such as histopathological images. Since various tissues make up the breast, there is a wide range of textural intensity, making abnormality detection difficult. As a result, there is an urgent need to improve computer-assisted systems (CAD) that can serve as a second opinion for radiologists when they use medical images. A self-training learning method employing deep learning neural network with residual learning is proposed to overcome the issue of needing a large number of labeled images to train deep learning models in breast cancer histopathology image classification. The suggested model is built from scratch and trained.

摘要

病理学家需要大量的临床经验和时间来进行组织病理学研究。人工智能在支持病理学家并实现更准确、更高效的组织病理学诊断方面可能发挥重要作用。乳腺癌是全球女性最常见的诊断癌症之一。可以使用组织病理学图像等成像方法来检测和诊断乳腺癌。由于乳房由各种组织组成,因此纹理强度范围很广,使得异常检测变得困难。因此,迫切需要改进计算机辅助系统 (CAD),以便在放射科医生使用医学图像时为他们提供第二个意见。提出了一种使用具有残差学习的深度学习神经网络的自训练学习方法,以解决在乳腺癌组织病理学图像分类中需要大量标记图像来训练深度学习模型的问题。所提出的模型是从头开始构建和训练的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9a6/9576372/130c6ea37443/CIN2022-9086060.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验