Suppr超能文献

血清层粘连蛋白 γ2 单体作为慢性乙型肝炎病毒感染患者肝细胞癌的预测性生物标志物:一项回顾性队列研究。

Serum laminin γ2 monomer as a predictive biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection: a retrospective cohort study.

机构信息

Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan.

Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan.

出版信息

Sci Rep. 2024 Oct 25;14(1):25395. doi: 10.1038/s41598-024-77068-4.

Abstract

This retrospective study evaluated the use of laminin γ2 monomer (LG2m) as a predictive biomarker for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV) infection. Serum LG2m levels were measured in two cohorts of patients: cohort 1 comprised 56 patients with chronic liver disease for assessing LG2m stability, whereas cohort 2 included 89 patients with chronic HBV infection who did not have HCC for evaluating the usefulness of LG2m measurement in HCC prediction. LG2m was highly stable in cryopreserved serum, and an increased LG2m level was significantly associated with a higher risk of HCC in chronically HBV-infected patients (P = 0.012). Multivariable Cox regression analysis revealed that high LG2m was an independent significant risk factor for HCC (hazard ratio, 7.16; 95% confidence interval, 1.31-39.2; P = 0.023). These findings suggest that LG2m may serve as a useful biomarker for the prediction of future HCC in patients with chronic HBV infection.

摘要

这项回顾性研究评估了层粘连蛋白 γ2 单体 (LG2m) 作为慢性乙型肝炎病毒 (HBV) 感染患者肝细胞癌 (HCC) 的预测性生物标志物的作用。在两个患者队列中测量了血清 LG2m 水平:队列 1 包括 56 例慢性肝病患者,用于评估 LG2m 的稳定性,而队列 2 包括 89 例无 HCC 的慢性 HBV 感染患者,用于评估 LG2m 测量在 HCC 预测中的有用性。LG2m 在冷冻保存的血清中高度稳定,并且 LG2m 水平升高与慢性 HBV 感染患者 HCC 风险增加显著相关(P = 0.012)。多变量 Cox 回归分析显示,高 LG2m 是 HCC 的独立显著危险因素(危险比,7.16;95%置信区间,1.31-39.2;P = 0.023)。这些发现表明,LG2m 可能作为慢性 HBV 感染患者未来 HCC 预测的有用生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd38/11511935/4874d504d383/41598_2024_77068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验