Assiri Mohammed
Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, 16273, Al-Kharj, Saudi Arabia.
Sci Rep. 2024 Oct 25;14(1):25383. doi: 10.1038/s41598-024-76770-7.
Software malware detection and classification leverage sophisticated procedures and methods from the cybersecurity domain for identifying and categorizing malicious software, generally called malware. This procedure analyses code behaviour, file structures, and other features to distinguish between benign and malicious programs. Machine learning (ML) and artificial intelligence (AI) are vital in this domain, allowing the progress of dynamic and adaptive systems that identify novel and developing malware attacks. By training on massive datasets of benign and malicious instances, these systems learn patterns and signatures indicative of malware. This lets them correctly categorize and respond to potential attacks in real-time. This study presents a Global Whale Optimization Algorithm with Neutrosophic Logic for Software Malware Detection and Classification (GWOANL-SMDC) technique. The GWOANL-SMDC technique secures the software via the Android malware recognition process. Primarily, the GWOANL-SMDC technique employs the Neutrosophic Cognitive Maps (NCM) model for the feature selection process. The GWOANL-SMDC technique uses a convolutional long short-term memory (ConvLSTM) model for software malware detection. At last, the GWOA-based parameter tuning is performed to improve the performance of the ConvLSTM model. The simulation values of the GWOANL-SMDC technique are examined on the malware dataset. The obtained results ensured that the GWOANL-SMDC technique improved capability in detecting software malware.
软件恶意软件检测与分类利用网络安全领域的复杂程序和方法来识别恶意软件并对其进行分类,恶意软件通常简称为malware。此过程分析代码行为、文件结构和其他特征,以区分良性程序和恶意程序。机器学习(ML)和人工智能(AI)在该领域至关重要,它们推动了能够识别新型和不断发展的恶意软件攻击的动态自适应系统的进步。通过在大量良性和恶意实例的数据集上进行训练,这些系统学习到指示恶意软件的模式和特征。这使它们能够实时正确地对潜在攻击进行分类并做出响应。本研究提出了一种用于软件恶意软件检测与分类的带有中性逻辑的全局鲸鱼优化算法(GWOANL-SMDC)技术。GWOANL-SMDC技术通过安卓恶意软件识别过程来保护软件安全。首先,GWOANL-SMDC技术采用中性认知图(NCM)模型进行特征选择过程。GWOANL-SMDC技术使用卷积长短期记忆(ConvLSTM)模型进行软件恶意软件检测。最后,进行基于GWOA的参数调整以提高ConvLSTM模型的性能。在恶意软件数据集上检验了GWOANL-SMDC技术的仿真值。所得结果确保了GWOANL-SMDC技术在检测软件恶意软件方面具有更高的能力。