Zhang Sheng, Bei Zhenghao, Ling Tonghua, Chen Qianqian, Zhang Liang
School of Civil Engineering, Hunan City University, Yiyang, 413000, China.
School of Civil Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
Sci Rep. 2024 Oct 25;14(1):25416. doi: 10.1038/s41598-024-77173-4.
Accurate detection of asphalt pavement distress is crucial for road maintenance and traffic safety. However, traditional convolutional neural networks usually struggle with this task due to the varied distress patterns and complex background in the images. To enhance the accuracy of asphalt pavement distress identification across various scenarios, this paper introduces an improved model named SMG-YOLOv8, based on the YOLOv8s framework. This model integrates the space-to-depth module and the multi-scale convolutional attention mechanism, while optimizing the backbone's C2f structure with a more efficient G-GhostC2f structure. Experimental results demonstrate that SMG-YOLOv8 outperforms the YOLOv8s baseline model, achieving P and mAP50 scores of 81.1% and 79.4% respectively, marking an increase of 8.2% and 12.5% over the baseline. Furthermore, SMG-YOLOv8 exhibits clear advantages in identifying various types of pavement distresses, including longitudinal cracks, transverse cracks, mesh cracks, and potholes, when compared to YOLOv5n, YOLOv5s, YOLOv6s, YOLOv8n, and SSD models. This enhancement optimizes the network structure, reducing the number of parameters while maintaining excellent detection performance. In real-world scenarios, the SMG-YOLOv8 model, when applied to image data collected from projects, achieves a P of 80.5% and an R of 86.2%. This result demonstrates its excellent generalization capability and practicality. The model provides significant technical support for the intelligent detection of pavement distress.
准确检测沥青路面病害对于道路养护和交通安全至关重要。然而,由于图像中病害模式多样且背景复杂,传统卷积神经网络在这项任务上通常面临困难。为提高沥青路面病害在各种场景下识别的准确性,本文基于YOLOv8s框架引入了一种名为SMG-YOLOv8的改进模型。该模型集成了空间到深度模块和多尺度卷积注意力机制,同时用更高效的G-GhostC2f结构优化骨干网络的C2f结构。实验结果表明,SMG-YOLOv8优于YOLOv8s基线模型,P和mAP50分数分别达到81.1%和79.4%,比基线分别提高了8.2%和12.5%。此外,与YOLOv5n、YOLOv5s、YOLOv6s、YOLOv8n和SSD模型相比,SMG-YOLOv8在识别各种类型的路面病害(包括纵向裂缝、横向裂缝、网状裂缝和坑洼)方面具有明显优势。这种改进优化了网络结构,在保持出色检测性能的同时减少了参数数量。在实际场景中,SMG-YOLOv8模型应用于项目采集的图像数据时,P为80.5%,R为86.2%。这一结果表明其具有出色的泛化能力和实用性。该模型为路面病害的智能检测提供了重要的技术支持。