Suppr超能文献

乳腺癌中受体状态、组织病理学分类(B1-B5)及累积组织学维度的综合分析:恶性肿瘤的预测因素及诊断意义

Comprehensive Analysis of Receptor Status, Histopathological Classifications (B1-B5), and Cumulative Histological Dimensions in Breast Cancer: Predictors of Malignancy and Diagnostic Implications.

作者信息

Burciu Oana Maria, Sas Ioan, Merce Adrian-Grigore, Cerbu Simona, Moatar Aurica Elisabeta, Eftenoiu Anca-Elena, Cobec Ionut Marcel

机构信息

Doctoral School, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania.

Department of Functional Sciences, Medical Informatics and Biostatistics Discipline, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.

出版信息

Cancers (Basel). 2024 Oct 14;16(20):3471. doi: 10.3390/cancers16203471.

Abstract

INTRODUCTION

Breast cancer has become one of the most serious and widespread public health concerns globally, affecting an increasing number of women-and, in rare cases, men-across the world. It is the most common cancer among women across all countries. In this study, we aimed to evaluate the influence of demographic factors, medical and reproductive history, diagnostic techniques, and hormone receptor status on the development and progression of breast cancer.

MATERIALS AND METHODS

A total of 687 female patients from Romania underwent standard breast examination techniques, including clinical breast examination, mammography, ultrasonography, and, ultimately, breast biopsy. Statistical analysis was performed using the R programming language and RStudio software. The study included a comparative analysis and a prediction analysis for malignancy and tumor size (cumulative histological dimension) through logistic and linear regression models.

RESULTS

The comparative analysis identified several variables associated with malignancy: older age ( < 0.001), non-vulnerability ( = 0.04), no daily physical activity ( = 0.002), no re-biopsy ( < 0.001), immunohistochemistry use ( < 0.001), use of larger gauge needles ( < 0.001), ultrasound-guided biopsy ( < 0.001), and vacuum biopsy ( < 0.001). The hormone receptor statuses-estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR)-showed statistically significant differences in distribution across breast cancer B classifications. Logistic regression analysis identified ER, PR, and age as significant predictors of malignancy. Linear regression analysis revealed histopathological results, living environment, geographical region, vulnerability, prior breast examination, and the number of histological fragments as significant predictors of cumulative histological dimension.

CONCLUSIONS

Our predictive models demonstrate the impact of demographic factors, medical history, diagnostic techniques, and hormone receptor status on breast cancer development and progression, accounting for a significant portion of the variance in malignancy and cumulative histological dimension.

摘要

引言

乳腺癌已成为全球最严重且分布最广泛的公共卫生问题之一,影响着全球越来越多的女性,在极少数情况下也会影响男性。它是所有国家女性中最常见的癌症。在本研究中,我们旨在评估人口统计学因素、医疗和生殖史、诊断技术以及激素受体状态对乳腺癌发生和发展的影响。

材料与方法

来自罗马尼亚的687名女性患者接受了标准的乳房检查技术,包括临床乳房检查、乳腺钼靶摄影、超声检查,最终进行了乳房活检。使用R编程语言和RStudio软件进行统计分析。该研究通过逻辑回归和线性回归模型对恶性肿瘤和肿瘤大小(累积组织学维度)进行了比较分析和预测分析。

结果

比较分析确定了几个与恶性肿瘤相关的变量:年龄较大(<0.001)、不易患病(=0.04)、无日常体育活动(=0.002)、未再次活检(<0.001)、使用免疫组织化学(<0.001)、使用较大规格的针头(<0.001)、超声引导下活检(<0.001)以及真空活检(<0.001)。激素受体状态——雌激素受体(ER)、孕激素受体(PR)和雄激素受体(AR)——在乳腺癌B分类中的分布显示出统计学上的显著差异。逻辑回归分析确定ER、PR和年龄是恶性肿瘤的重要预测因素。线性回归分析显示组织病理学结果、生活环境、地理区域、易患病性、先前的乳房检查以及组织学碎片数量是累积组织学维度的重要预测因素。

结论

我们的预测模型证明了人口统计学因素、病史、诊断技术和激素受体状态对乳腺癌发生和发展的影响,解释了恶性肿瘤和累积组织学维度差异的很大一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd59/11506213/789e68aa6aef/cancers-16-03471-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验