Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia.
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Int J Mol Sci. 2024 Oct 11;25(20):10942. doi: 10.3390/ijms252010942.
After tooth extraction, bone levels in the alveoli decrease. Using a bone substitute can help minimize this bone loss. The substitute can be sourced from a human or animal donor or synthetically prepared. In this study, we aimed to address the following PICOS question: In patients needing dental alveolar preservation for implant placement, how does alveolar preservation using a bovine hydroxyapatite bone xenograft with collagen compare to a xenograft without collagen in terms of changes in alveolar height and width, bone density, and the characteristics of the bone tissue observed in biopsies taken at 6 months? We evaluated two xenograft-type bone substitutes for preserving post-extraction dental sockets using tomography and microscopy to answer that question. A total of 18 dental alveoli were studied: 11 preserved with a xenograft composed of apatite (InterOss) and 7 with a xenograft composed of apatite-collagen (InterOss Collagen). Tomographic controls were performed at 1 and 6 months, and microscopic studies were performed on 13 samples. The biopsies were examined with scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). A Multivariate Analysis of Variance (MANOVA) was conducted in the statistical analysis, revealing a significant increase in bone density over time ( = 0.04). Specifically, bone density increased from an average of 526.14 HU at 30 days to 721.96 HU at 60 days in collagen-free samples. However, no statistically significant differences in height or width were found between groups. The MANOVA results indicated that the overall model had a low predictive ability for height, width, and density variables (R-squared values were low), likely due to sample size limitations and the complexity of bone tissue dynamics. On the other hand, FTIR analysis revealed the presence of phosphate groups, carbonates, and amides I, II, and III, indicative of inorganic (hydroxyapatite) and organic (type I collagen) materials in the xenografts. TGA and DSC showed high thermal stability, with minimal mass loss below 150 °C. Finally, both xenografts were influential in alveolar bone regeneration after extraction without significant differences. The trend of increasing collagen density suggests an effect that requires further investigation. However, it is recommended that the sample size be increased to enhance the validity of the results.
拔牙后,牙槽骨的骨量会减少。使用骨替代物可以帮助最小化这种骨丢失。这种替代物可以来源于人类或动物供体,也可以是合成制备的。在这项研究中,我们旨在解决以下 PICOS 问题:在需要进行牙牙槽骨保存以植入种植体的患者中,使用牛羟磷灰石骨同种异体移植物与无胶原的同种异体移植物相比,在 6 个月时牙槽高度和宽度、骨密度以及活检中观察到的骨组织特征方面,牙槽骨保存情况如何?我们使用断层扫描和显微镜评估了两种用于保存拔牙后牙窝的同种异体移植物,以回答这个问题。共研究了 18 个牙牙槽:11 个用由磷灰石(InterOss)组成的同种异体移植物保存,7 个用由磷灰石-胶原组成的同种异体移植物保存(InterOss Collagen)。在 1 个月和 6 个月时进行了断层扫描对照,对 13 个样本进行了显微镜研究。活检通过扫描电子显微镜(SEM)和能谱(EDS)进行检查。在统计分析中进行了多变量方差分析(MANOVA),结果显示骨密度随时间显著增加( = 0.04)。具体来说,无胶原样本的骨密度从 30 天的平均 526.14 HU 增加到 60 天的 721.96 HU。然而,组间在高度或宽度上没有发现统计学上的显著差异。MANOVA 结果表明,总体模型对高度、宽度和密度变量的预测能力较低(R 平方值较低),这可能是由于样本量有限和骨组织动态的复杂性所致。另一方面,FTIR 分析显示存在磷酸盐基团、碳酸盐和酰胺 I、II 和 III,表明同种异体移植物中存在无机(羟磷灰石)和有机(I 型胶原)材料。TGA 和 DSC 显示出高热稳定性,在低于 150°C 时质量损失最小。最后,两种同种异体移植物在拔牙后牙槽骨再生中都有影响,没有显著差异。胶原密度增加的趋势表明存在需要进一步研究的影响。然而,建议增加样本量以提高结果的有效性。