Ma Xinrui, Xu Kaihang, Gao Bin
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Biomedicines. 2024 Sep 26;12(10):2198. doi: 10.3390/biomedicines12102198.
To elucidate the pattern of the influence of the port angle of the superior vena cava supplying cannula (SVCS) on hemodynamics within the right atrium in VV-ECMO. A three-dimensional model of the right atrium was established based on CT images of a real patient. The 3D models of the SVCS and inferior vena cava draining cannula (IVCD) were established based on the Edwards 18Fr and Medos 22Fr real intubation models, respectively. Based on these models, three-dimensional models of the SVCS ports with bending angles of -90°, -60°, -30°, 0°, 30°, 60°, and 90° in the plane formed by the centerline of the SVCS and the center point of the tricuspid valve (TV) were established. Transient-state computational fluid dynamics (CFD) was performed to clarify the right atrium blood flow pattern and hemodynamic states at different SVCS port orientation angles. The velocity clouds, wall pressure, wall shear stress (WSS), relative residence time (RRT), and recirculation fraction (RF) were calculated to assess hemodynamic changes in the right atrium at different angles of the port of the SVCS. As the angle of the port of the superior chamber cannula changed, the location of the high-velocity blood impingement from the SVCS changed, and the pattern of blood flow within the right atrium was dramatically altered. The results for the maximum right atrial wall pressure were 13,472 pa, 13,424 pa, 10,915 pa, 7680.2 pa, 5890.3 pa, 5597.6 pa, and 7883.5 pa (-90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°), and the results for the mean right atrial wall pressure were 6788.9 pa, 8615.1 pa, 8684.9 pa, 6717.2 pa, 5429.2 pa, 5455.6 pa, and 7117.8 pa ( -90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°). The results of the maximum right atrial wall WSS in the seven cases were 63.572 pa, 55.839 pa, 31.705 pa, 39.531 pa, 40.11 pa, 28.474 pa, and 35.424 (-90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°), respectively, and the results of the mean right atrial wall WSS results were 3.8589 pa, 3.6706 pa, 3.3013 pa, 3.2487 pa, 2.3995 pa, 1.3304 pa, and 2.0747 pa (-90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°), respectively. The results for the area percentage of high RRT in the seven cases were 3.44%, 2.23%, 4.24%, 1.83%, 3.69%, 7.73%, and 3.68% (-90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°), and the results for the RF were 21.57%, 23.24%, 19.78%, 12.57%, 10.24%, 5.07%, and 8.05% (-90° vs. -60° vs. -30° vs. 0° vs. 30° vs. 60° vs. 90°). The more the port of the SVCS is oriented toward the TV, the more favorable it is for reducing RF and the impingement of blood flow in the right atrial wall, but there may be an increased risk of RRT. The opposite orientation of the SVCS port to the TV is not conducive to reducing flow impingement on the right atrial wall and RF.
为阐明静脉-静脉体外膜肺氧合(VV-ECMO)中,上腔静脉供应插管(SVCS)的端口角度对右心房内血流动力学的影响模式。基于一名真实患者的CT图像建立了右心房的三维模型。分别基于爱德华兹18Fr和梅多斯22Fr真实插管模型建立了SVCS和下腔静脉引流插管(IVCD)的三维模型。基于这些模型,在由SVCS中心线和三尖瓣(TV)中心点形成的平面中,建立了弯曲角度为-90°、-60°、-30°、0°、30°、60°和90°的SVCS端口的三维模型。进行瞬态计算流体动力学(CFD)以阐明不同SVCS端口取向角度下的右心房血流模式和血流动力学状态。计算速度云图、壁面压力、壁面剪切应力(WSS)、相对停留时间(RRT)和再循环分数(RF),以评估SVCS端口不同角度下右心房的血流动力学变化。随着上腔室插管端口角度的变化,来自SVCS的高速血流冲击位置发生改变,右心房内的血流模式也发生显著变化。右心房壁最大压力的结果分别为13472帕、13424帕、10915帕、7680.2帕、5890.3帕、5597.6帕和7883.5帕(-90°对-60°对-30°对0°对30°对60°对90°),右心房壁平均压力的结果分别为6788.9帕、8615.1帕、8684.9帕、6717.2帕、5429.2帕、5455.6帕和7117.8帕(-90°对-60°对-30°对0°对30°对60°对90°)。七例中右心房壁最大WSS的结果分别为63.572帕、55.839帕、31.705帕、39.531帕、40.11帕、28.474帕和35.424(-90°对-60°对-30°对0°对30°对60°对90°),右心房壁平均WSS结果分别为3.8589帕、3.6706帕、3.3013帕、3.2487帕、2.3995帕、1.3304帕和2.0747帕(-90°对-60°对-30°对0°对30°对60°对90°)。七例中高RRT面积百分比的结果分别为3.44%、2.23%、4.24%、1.83%、3.69%、7.73%和3.68%(-90°对-60°对-30°对0°对30°对60°对90°),RF的结果分别为21.57%、23.24%、19.78%、12.57%、10.24%、5.07%和8.05%(-90°对-60°对-30°对0°对30°对60°对90°)。SVCS端口越朝向TV,越有利于降低RF和减少右心房壁的血流冲击,但可能存在RRT增加的风险。SVCS端口与TV的相反取向不利于减少对右心房壁的血流冲击和RF。