Souza Alene Santos, Costa Adriano Carvalho, França Heyde Francielle do Carmo, Nuvunga Joel Jorge, Ferreira de Melo Gidélia Araújo, Lima Lessandro do Carmo, Kretschmer Vitória de Vasconcelos, de Oliveira Débora Ázara, Horn Liege Dauny, Rezende Isabel Rodrigues de, Fernandes Marília Parreira, Reis Neto Rafael Vilhena, Freitas Rilke Tadeu Fonseca de, Oliveira Rodrigo Fortunato de, Viadanna Pedro Henrique, Vitorino Brenno Muller, Minafra Cibele Silva
Department of Science Animal, Federal Institute of Education, Science and Technology of Goiás (IF Goiano), Campus Rio Verde, Goiana South Highway, Km 01, Rio Verde 75901-970, GO, Brazil.
Center of Excellence in Agri-Food Systems and Nutrition, Eduardo Mondlane University, Julius Nyerere, n° 3453, Maputo P.O. Box 257, Mozambique.
Animals (Basel). 2024 Oct 17;14(20):2999. doi: 10.3390/ani14202999.
Identifying and counting fish are crucial for managing stocking, harvesting, and marketing of farmed fish. Researchers have used convolutional networks for these tasks and explored various approaches to enhance network learning. Batch normalization is one technique that improves network stability and accuracy. This study aimed to evaluate machine learning for identifying and counting pirapitinga fry with different batch sizes. The researchers used one thousand photographic images of Pirapitinga fingerlings, labeled with bounding boxes. They trained the adapted convolutional network model with batch normalization layers added at the end of each convolution block. They set the training to one hundred and fifty epochs and tested batch sizes of 5, 10, and 20. Furthermore, they measured network performance using precision, recall, and mAP@0.5. Models with smaller batch sizes performed less effectively. The training with a batch size of 20 achieved the best performance, with a precision of 96.74%, recall of 95.48%, mAP@0.5 of 97.08%, and accuracy of 98%. This indicates that larger batch sizes improve accuracy in detecting and counting pirapitinga fry across different fish densities.
识别和计数鱼类对于管理养殖鱼类的放养、捕捞和销售至关重要。研究人员已将卷积网络用于这些任务,并探索了各种方法来增强网络学习。批量归一化是一种提高网络稳定性和准确性的技术。本研究旨在评估使用不同批量大小识别和计数巨脂鲤鱼苗的机器学习方法。研究人员使用了一千张带有边界框标记的巨脂鲤幼鱼照片。他们在每个卷积块末尾添加了批量归一化层来训练适配的卷积网络模型。他们将训练设置为150个轮次,并测试了5、10和20的批量大小。此外,他们使用精确率、召回率和mAP@0.5来衡量网络性能。较小批量大小的模型表现较差。批量大小为20的训练取得了最佳性能,精确率为96.74%,召回率为95.48%,mAP@0.5为97.08%,准确率为98%。这表明较大的批量大小可提高在不同鱼类密度下检测和计数巨脂鲤鱼苗的准确性。