Suppr超能文献

通过工业分拣回收的消费后塑料废物中聚合物组分的成分分析与机械回收:关于实施人工智能数据库的案例研究

Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases.

作者信息

Olivieri Federico, Caputo Antonino, Leonetti Daniele, Castaldo Rachele, Avolio Roberto, Cocca Mariacristina, Errico Maria Emanuela, Iannotta Luigi, Avella Maurizio, Carfagna Cosimo, Gentile Gennaro

机构信息

Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy.

Lavorgna Igiene Urbana srl, Via Tratturo Regio, 82030 San Lorenzello, Italy.

出版信息

Polymers (Basel). 2024 Oct 15;16(20):2898. doi: 10.3390/polym16202898.

Abstract

Nowadays, society is oriented toward reducing the production of plastics, which have a significant impact on the environment. In this context, the recycling of existing plastic objects is currently a fundamental step in the mitigation of pollution. Very recently, the outstanding development of artificial intelligence (AI) has concerned and continues to involve a large part of the industrial and informatics sectors. The opportunity to implement big data in the frame of recycling processes is oriented toward the improvement and the optimization of the reproduction of plastic objects, possibly with enhanced properties and durability. Here, a deep cataloguing, characterization and recycling of plastic wastes provided by an industrial sorting plant was performed. The potential improvement of the mechanical properties of the recycled polymers was assessed by the addition of coupling agents. On these bases, a classification system based on the collected results of the recycled materials' properties was developed, with the aim of laying the groundwork for the improvement of AI databases and helpfully supporting industrial recycling processes.

摘要

如今,社会致力于减少对环境有重大影响的塑料生产。在此背景下,回收现有塑料制品目前是减轻污染的关键一步。最近,人工智能(AI)的显著发展引起了并持续涉及大部分工业和信息领域。在回收过程框架内实施大数据的机会旨在改进和优化塑料制品的再生产,可能具有增强的性能和耐用性。在此,对一家工业分拣厂提供的塑料废物进行了深入编目、表征和回收。通过添加偶联剂评估了回收聚合物机械性能的潜在改善。在此基础上,基于回收材料性能的收集结果开发了一个分类系统,旨在为改进人工智能数据库奠定基础,并为工业回收过程提供有益支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b0d/11511514/630412f88940/polymers-16-02898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验