Hernández Fernández Joaquín Alejandro, Prieto Palomo Jose Alfonso, Ortega-Toro Rodrigo
Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, Universidad de Cartagena, Cartagena de Indias D.T. y C., Cartagena 130015, Colombia.
Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 080002, Colombia.
Polymers (Basel). 2025 Mar 28;17(7):923. doi: 10.3390/polym17070923.
The degradation of polystyrene (PS) represents a significant challenge in plastic waste management due to its chemical stability and low biodegradability. In this study, the catalytic degradation mechanisms of PS were investigated by density functional theory (DFT)-based calculations using the hybrid functional B3LYP and the 6-311G++(d,p) basis in Gaussian 16. The influence of acidic (AlCl, Fe(SO)) and basic (CaO) catalysts was evaluated in terms of activation energy, reaction mechanisms, and degradation products. The results revealed that acid catalysts induce PS fragmentation through the formation of carbocationic intermediates, promoting the selective cleavage of C-C bonds in branched chains with bond dissociation energies (BDE) of 176.8 kJ/mol (C1-C7) and 175.2 kJ/mol (C3-C8). In contrast, basic catalysts favor β-scission by stabilizing carbanions, reducing the BDE to 151.6 kJ/mol (C2-C3) and 143.9 kJ/mol (C3-C4), which facilitates the formation of aromatic products such as styrene and benzene. Fe(SO) was found to significantly decrease the activation barriers to 328.12 kJ/mol, while the basic catalysts reduce the energy barriers to 136.9 kJ/mol. Gibbs free energy (ΔG) calculations confirmed the most favorable routes, providing key information for the design of optimized catalysts in PS valorization. This study highlights the usefulness of computational modeling in the optimization of plastic recycling strategies, contributing to the development of more efficient and sustainable methods.
由于聚苯乙烯(PS)具有化学稳定性且生物降解性低,其降解成为塑料废物管理中的一项重大挑战。在本研究中,使用高斯16软件中的杂化泛函B3LYP和6 - 311G++(d,p)基组,通过基于密度泛函理论(DFT)的计算研究了PS的催化降解机制。从活化能、反应机制和降解产物方面评估了酸性(AlCl、Fe(SO))和碱性(CaO)催化剂的影响。结果表明,酸催化剂通过形成碳正离子中间体诱导PS断裂,促进支链中C - C键的选择性断裂,其键解离能(BDE)为176.8 kJ/mol(C1 - C7)和175.2 kJ/mol(C3 - C8)。相比之下,碱性催化剂通过稳定碳负离子有利于β - 断裂,将BDE降低至151.6 kJ/mol(C2 - C3)和143.9 kJ/mol(C3 - C4),这有利于形成苯乙烯和苯等芳香族产物。发现Fe(SO)可将活化能垒显著降低至328.12 kJ/mol,而碱性催化剂将能垒降低至136.9 kJ/mol。吉布斯自由能(ΔG)计算确定了最有利的途径,为PS增值过程中优化催化剂的设计提供了关键信息。本研究突出了计算建模在优化塑料回收策略方面的有用性,有助于开发更高效、可持续的方法。