Suppr超能文献

利用网络药理学、分子对接以及ADME/药物相似性预测探索抗糖尿病潜力

Exploring the Antidiabetic Potential of Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions.

作者信息

Ononamadu Chimaobi J, Seidel Veronique

机构信息

Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.

Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria.

出版信息

Plants (Basel). 2024 Oct 16;13(20):2892. doi: 10.3390/plants13202892.

Abstract

A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of and provides further insights for future drug discovery purposes.

摘要

采用网络药理学、分子对接和ADME/药物相似性预测相结合的方法,探索化合物与2型糖尿病发病机制中关键靶点相互作用的潜力。这些靶点是使用SwissTargetPrediction、相似性集成方法和BindingDB数据库预测的。使用STRING在线工具和Cytoscape(v.3.9.1)软件构建网络。分别使用DAVID、SHINEGO 0.77和MOE套件进行基因本体(GO)、京都基因与基因组百科全书(KEGG)通路分析和分子对接。使用SwissADME和Molsoft L.L.C.计算ADME/药物相似性参数。排名靠前的靶点是CTNNB1、JUN、ESR1、RELA、NR3C1、CREB1、PPARG、PTGS2、CYP3A4、MMP9、UGT2B7、CYP2C19、SLCO1B1、AR、CYP19A1、PARP1、CYP1A2、CYP1B1、HSD17B1和GSK3B。芹菜素、咖啡酸、齐墩果酸、迷迭香酸、滨蓟黄素和丹酚酸B在化合物-靶点网络中显示出最高的连接度。基因富集分析确定了糖尿病并发症中涉及胰岛素抵抗、黏着连接、代谢过程、IL-17、TNF-α、cAMP、松弛素和AGE-RAGE的通路。迷迭香酸、咖啡酸和丹酚酸B与PTGS2、DPP4、AMY1A、PTB1B、PPARG、GSK3B和RELA表现出最有前景的相互作用。总体而言,本研究增进了对[未提及具体物质]抗糖尿病活性的理解,并为未来的药物发现提供了进一步的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ed/11510882/131ac1321ebb/plants-13-02892-g001.jpg

相似文献

5
Exploring the mechanism of Cremastra Appendiculata (SUANPANQI) against breast cancer by network pharmacology and molecular docking.
Comput Biol Chem. 2021 Oct;94:107396. doi: 10.1016/j.compbiolchem.2020.107396. Epub 2020 Oct 1.
6
Integrating Network Pharmacology with Molecular Docking to Unravel the Active Compounds and Potential Mechanism of Simiao Pill Treating Rheumatoid Arthritis.
Evid Based Complement Alternat Med. 2020 Nov 3;2020:5786053. doi: 10.1155/2020/5786053. eCollection 2020.

本文引用的文献

1
Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review.
Metabol Open. 2024 May 19;22:100287. doi: 10.1016/j.metop.2024.100287. eCollection 2024 Jun.
2
Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement.
Phytomedicine. 2024 Jul;129:155638. doi: 10.1016/j.phymed.2024.155638. Epub 2024 Apr 16.
4
COX2 inhibitor use and type 2 diabetes treatment intensification: A registry-based cohort study.
Diabetes Res Clin Pract. 2024 Jan;207:111082. doi: 10.1016/j.diabres.2023.111082. Epub 2023 Dec 29.
5
Therapeutic Benefit of in the Treatment of Diabetes and Its Associated Complications in Preclinical Studies.
J Diabetes Res. 2023 Nov 22;2023:3159352. doi: 10.1155/2023/3159352. eCollection 2023.
6
Caffeic Acid in Spent Coffee Grounds as a Dual Inhibitor for MMP-9 and DPP-4 Enzymes.
Molecules. 2023 Oct 19;28(20):7182. doi: 10.3390/molecules28207182.
9
Effects of oleanolic acid administration on renal NF-kB, IL-18, IL-6, YKL-40, and KIM-1 in experimental diabetic rats.
Iran J Basic Med Sci. 2023;26(10):1188-1193. doi: 10.22038/IJBMS.2023.71321.15504.
10
The PTGS2/COX2-PGE signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus.
Int J Biol Sci. 2023 Aug 6;19(13):4157-4165. doi: 10.7150/ijbs.86492. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验