Suppr超能文献

光敏色素的高荧光并不需要发色团质子化。

High Fluorescence of Phytochromes Does Not Require Chromophore Protonation.

机构信息

Institute of Chemistry, Technical University Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.

Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany.

出版信息

Molecules. 2024 Oct 19;29(20):4948. doi: 10.3390/molecules29204948.

Abstract

Fluorescing proteins emitting in the near-infrared region are of high importance in various fields of biomedicine and applied life sciences. Promising candidates are phytochromes that can be engineered to a small size and genetically attached to a target system for in vivo monitoring. Here, we have investigated two of these minimal single-domain phytochromes, miRFP670nano3 and miRFP718nano, aiming at a better understanding of the structural parameters that control the fluorescence properties of the covalently bound biliverdin (BV) chromophore. On the basis of resonance Raman and time-resolved fluorescence spectroscopy, it is shown that in both proteins, BV is deprotonated at one of the inner pyrrole rings (B or C). This protonation pattern, which is unusual for tetrapyrroles in proteins, implies an equilibrium between a B- and C-protonated tautomer. The dynamics of the equilibrium are slow compared to the fluorescence lifetime in miRFP670nano3 but much faster in miRFP718nano, both in the ground and excited states. The different rates of proton exchange are most likely due to the different structural dynamics of the more rigid and more flexible chromophore in miRFP670nano3 and miRFP718nano, respectively. We suggest that these structural properties account for the quite different fluorescent quantum yields of both proteins.

摘要

在生物医学和应用生命科学的各个领域,近红外区域发射荧光的蛋白质具有重要意义。有前途的候选物是可以被工程改造为小尺寸的光致变色蛋白,并与目标系统进行基因连接,用于体内监测。在这里,我们研究了这两种最小的单结构域光致变色蛋白,miRFP670nano3 和 miRFP718nano,旨在更好地了解控制共价结合的胆绿素(BV)发色团荧光特性的结构参数。基于共振拉曼和时间分辨荧光光谱,表明在这两种蛋白质中,BV 在一个内吡咯环(B 或 C)上被去质子化。这种质子化模式对于蛋白质中的四吡咯来说是不寻常的,暗示 B 和 C 质子化互变异构体之间存在平衡。平衡的动力学与 miRFP670nano3 中的荧光寿命相比在 miRFP718nano 中较慢,但在基态和激发态中都比 miRFP718nano 快得多。质子交换的不同速率很可能是由于 miRFP670nano3 和 miRFP718nano 中分别更刚性和更灵活的发色团的不同结构动力学所致。我们建议这些结构特性解释了这两种蛋白质相当不同的荧光量子产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d6e/11510734/17bacc94808c/molecules-29-04948-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验