Wadhwa Arjun, Saadati Mohammad, Benavides-Guerrero Jaime, Bolduc Martin, Cloutier Sylvain G
Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montreal, QC H3C 1K3, Canada.
Department of Mechanical Engineering, Université du Québec à Trois-Rivières, 555 Boulevard de l'Université, Drummondville, QC J2C 0R5, Canada.
Materials (Basel). 2024 Oct 11;17(20):4966. doi: 10.3390/ma17204966.
We extensively studied serigraphic screen-printed commercial silver flake inks loaded with silicon inclusions in order to achieve pinning at the grain boundaries. Based on grain size measurements using electron backscattered diffraction (EBSD), commercial silver ink with silicon microparticle content of 5 wt.% shows significant grain growth retardation compared to pristine silver ink, which stabilizes electrical conductivity up to 700 °C via a Zener pinning mechanism. The modified silicon-loaded silver ink experiences a two-times increase in grain size when heated up to 700 °C, compared to a seven-times increase for pristine silver ink. In turn, this enables operation temperatures significantly higher than the conventional operational window of microparticle-based silver inks, which are usually limited to 400 °C. Using isothermal exposures of 10 min up to 4 h, this phenomenon is observed at temperatures ranging from 250 °C to 900 °C. The electrical conductivity stability, grain size evolution and oxide contents were studied up to 4 h. The activation energy of silver ink with silicon inclusions is 54% lower than for pristine silver ink due to the pining effect, which retards grain growth via the Zener mechanism. Most importantly, the electrical resistivity remains stable up to 700 °C, which is more than twice the operation limit for off-the-shelf screen-printable silver flake inks. Hence, we demonstrate that adding controlled amounts of silicon particles to silver inks for grain structure engineering can open new vistas of possibilities for screen-printed metallic inks.
我们广泛研究了负载硅夹杂物的丝网印刷商用银片油墨,以实现晶界钉扎。基于使用电子背散射衍射(EBSD)进行的晶粒尺寸测量,与原始银油墨相比,硅微粒含量为5 wt.%的商用银油墨显示出显著的晶粒生长迟缓,通过齐纳钉扎机制,其电导率在高达700°C时保持稳定。与原始银油墨晶粒尺寸增加七倍相比,改性的含硅银油墨在加热到700°C时晶粒尺寸增加两倍。相应地,这使得操作温度显著高于基于微粒的银油墨的传统操作窗口,后者通常限制在400°C。通过10分钟至4小时的等温暴露,在250°C至900°C的温度范围内观察到了这种现象。研究了长达4小时的电导率稳定性、晶粒尺寸演变和氧化物含量。由于钉扎效应,含硅夹杂物的银油墨的活化能比原始银油墨低54%,钉扎效应通过齐纳机制阻碍晶粒生长。最重要的是,电导率在高达700°C时保持稳定,这是现成的丝网印刷银片油墨操作极限的两倍多。因此,我们证明,向银油墨中添加受控量的硅颗粒以进行晶粒结构工程,可以为丝网印刷金属油墨开辟新的可能性前景。