Deng Rui, Wang Mingshuai, Zhang Hao, Yao Ruijun, Zhen Kai, Liu Yifei, Liu Xingjun, Wang Cuiping
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
Shenzhen R&D Center for Al-Based Hydrogen Hydrolysis Materials, Shenzhen 518055, China.
Materials (Basel). 2024 Oct 11;17(20):4973. doi: 10.3390/ma17204973.
Leveraging the liquid-phase immiscibility effect and phase diagram calculations, a sequence of alloy powders with varying Fe content was designed and fabricated utilizing the gas atomization method. Microstructural characterizations, employing SEM, EDS, and XRD analyses, revealed the successful formation of an incomplete shell on the surfaces of Al-Bi-Fe powders, obviating the need for Sn doping. This study systematically investigated the microstructure, hydrolysis performance, and hydrolysis process of these alloys in deionized water. Notably, Al-10Bi-7Fe exhibited the highest hydrogen production, reaching 961.0 NmL/g, while Al-10Bi-10Fe demonstrated the peak conversion rate at 92.99%. The hydrolysis activation energy of each Al-Bi-Fe alloy powder was calculated using the Arrhenius equation, indicating that a reduction in activation energy was achieved through Fe doping.
利用液相不混溶效应和相图计算,设计并采用气体雾化法制备了一系列铁含量不同的合金粉末。通过扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分析进行微观结构表征,结果表明在Al-Bi-Fe粉末表面成功形成了不完全壳层,无需进行锡掺杂。本研究系统地研究了这些合金在去离子水中的微观结构、水解性能和水解过程。值得注意的是,Al-10Bi-7Fe的产氢量最高,达到961.0 NmL/g,而Al-10Bi-10Fe的转化率峰值为92.99%。使用阿伦尼乌斯方程计算了每种Al-Bi-Fe合金粉末的水解活化能,表明通过铁掺杂实现了活化能的降低。