Suppr超能文献

基于孪晶变形模式的挤压态AZ80镁合金室温多向锻造过程中的微观组织演变与力学性能

Microstructural Evolution and Mechanical Properties of Extruded AZ80 Magnesium Alloy during Room Temperature Multidirectional Forging Based on Twin Deformation Mode.

作者信息

Wang Rou, Yan Fafa, Sun Jiaqi, Xing Wenfang, Li Shuchang

机构信息

Ningbo Surface Engineering Research Institute Co., Ltd., Ningbo 315177, China.

Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315103, China.

出版信息

Materials (Basel). 2024 Oct 16;17(20):5055. doi: 10.3390/ma17205055.

Abstract

This study investigates the preparation of ultrahigh-strength AZ80 magnesium alloy bulks using room temperature multidirectional forging (MDF) at different strain rates. The focus is on elucidating the effects of multidirectional loading and strain rates on grain refinement and the subsequent impact on the mechanical properties of the AZ80 alloy. Unlike hot deformation, the alloy subjected to room temperature MDF exhibits a lamellar twinned structure with multi-scale interactions. The key to achieving effective room temperature MDF of the alloy lies in combining multidirectional loading with small forging strains per pass (6%). This approach not only maximizes the activation of twinning to accommodate deformation but ensures sufficient grain refinement. Microstructural analysis reveals that the evolution of the grain structure in the alloy during deformation results from the competition between {101¯2} twinning or twinning variant interactions and detwinning. Increasing the forging rate effectively activates more twin variants, and additional deformation passes significantly enhance twin interaction levels and dislocation density. Furthermore, at a higher strain rate, more pronounced dislocation accumulation facilitates the transformation of twin structures into high-angle grain boundaries, promoting texture dispersion and suppressing detwinning. The primary strengthening mechanisms in room temperature MDF samples are grain refinement and dislocation strengthening. While increased dislocation density raises yield strength, it reduces post-yield work hardening capacity. After two passes of MDF at a higher strain rate, the alloy achieves an optimal balance of strength and ductility, with a tensile strength of 462 MPa and an elongation of 5.1%, significantly outperforming hot-deformed magnesium alloys.

摘要

本研究调查了使用室温多向锻造(MDF)在不同应变速率下制备超高强度AZ80镁合金块体。重点在于阐明多向加载和应变速率对晶粒细化的影响以及随后对AZ80合金力学性能的影响。与热变形不同,经受室温MDF的合金呈现出具有多尺度相互作用的层状孪晶结构。实现该合金有效室温MDF的关键在于将多向加载与每道次小锻造应变(6%)相结合。这种方法不仅能最大限度地激活孪晶以适应变形,还能确保充分的晶粒细化。微观结构分析表明,合金在变形过程中晶粒结构的演变源于{101¯2}孪晶或孪晶变体相互作用与去孪晶之间的竞争。提高锻造速率能有效激活更多的孪晶变体,额外的变形道次显著提高了孪晶相互作用水平和位错密度。此外,在较高应变速率下,更明显的位错积累促进了孪晶结构向大角度晶界的转变,促进了织构分散并抑制了去孪晶。室温MDF样品中的主要强化机制是晶粒细化和位错强化。虽然位错密度的增加提高了屈服强度,但降低了屈服后的加工硬化能力。在较高应变速率下经过两道次MDF后,该合金实现了强度和延展性的最佳平衡,抗拉强度为462MPa,伸长率为5.1%,明显优于热变形镁合金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f0/11509783/a377783a9891/materials-17-05055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验