Fang Guo-Hua, Lin Zhong-Ming, Xie Cheng-Zhi, Han Qing-Zhong, Hong Ming-Yang, Zhao Xin-Yu
CCC-FHDI Engineering Corp., Ltd., Guangzhou 510290, China.
China Construction Fourth Engineering Division Corp., Ltd., Guangzhou 510075, China.
Materials (Basel). 2024 Oct 18;17(20):5086. doi: 10.3390/ma17205086.
Alkali-activated concrete (AAC), produced from industrial by-products like fly ash and slag, offers a promising alternative to traditional Portland cement concrete by significantly reducing carbon emissions. Yet, the inherent variability in AAC formulations presents a challenge for accurately predicting its compressive strength using conventional approaches. To address this, we leverage machine learning (ML) techniques, which enable more precise strength predictions based on a combination of material properties and cement mix design parameters. In this study, we curated an extensive dataset comprising 1756 unique AAC mixtures to support robust ML-based modeling. Four distinct input variable schemes were devised to identify the optimal predictor set, and a comparative analysis was performed to evaluate their effectiveness. After this, we investigated the performance of several popular ML algorithms, including random forest (RF), adaptive boosting (AdaBoost), gradient boosting regression trees (GBRTs), and extreme gradient boosting (XGBoost). Among these, the XGBoost model consistently outperformed its counterparts. To further enhance the predictive accuracy of the XGBoost model, we applied four state-of-the-art optimization techniques: the Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), beetle antennae search (BAS), and Bayesian optimization (BO). The optimized XGBoost model delivered superior performance, achieving a remarkable coefficient of determination (R) of 0.99 on the training set and 0.94 across the entire dataset. Finally, we employed SHapely Additive exPlanations (SHAP) to imbue the optimized model with interpretability, enabling deeper insights into the complex relationships governing AAC formulations. Through the lens of ML, we highlight the benefits of the multi-faceted synergistic approach for AAC strength prediction, which combines careful input parameter selection, optimal hyperparameter tuning, and enhanced model interpretability. This integrated strategy improves both the robustness and scalability of the model, offering a clear and reliable prediction of AAC performance.
碱激活混凝土(AAC)由粉煤灰和矿渣等工业副产品制成,通过大幅减少碳排放,为传统波特兰水泥混凝土提供了一种很有前景的替代方案。然而,AAC配方中固有的变异性给使用传统方法准确预测其抗压强度带来了挑战。为了解决这个问题,我们利用机器学习(ML)技术,基于材料特性和水泥混合料设计参数的组合,能够更精确地预测强度。在本研究中,我们精心策划了一个包含1756种独特AAC混合物的广泛数据集,以支持基于ML的稳健建模。设计了四种不同的输入变量方案来确定最佳预测变量集,并进行了比较分析以评估其有效性。在此之后,我们研究了几种流行的ML算法的性能,包括随机森林(RF)、自适应提升(AdaBoost)、梯度提升回归树(GBRT)和极端梯度提升(XGBoost)。其中,XGBoost模型始终优于其他模型。为了进一步提高XGBoost模型的预测准确性,我们应用了四种先进的优化技术:灰狼优化器(GWO)、鲸鱼优化算法(WOA)、甲虫触角搜索(BAS)和贝叶斯优化(BO)。优化后的XGBoost模型表现出色,在训练集上的决定系数(R)达到了0.99,在整个数据集上达到了0.94。最后,我们采用SHapely加法解释(SHAP)使优化后的模型具有可解释性,从而能够更深入地了解控制AAC配方的复杂关系。通过ML的视角,我们强调了多方面协同方法对AAC强度预测的好处,该方法结合了仔细的输入参数选择、最佳超参数调整和增强的模型可解释性。这种综合策略提高了模型的稳健性和可扩展性,为AAC性能提供了清晰可靠的预测。