López Queenny K, Cárdenas Rafael E, Ramírez Castro Francisco, Vizuete Karla, Checa María F, Costa Vera César
Mass Spectrometry and Optical Spectroscopy Group, Departamento de Fisica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre 1076 y Roca, Quito 170525, Ecuador.
Materials (Basel). 2024 Oct 18;17(20):5084. doi: 10.3390/ma17205084.
Butterfly wing scales feature complex nanostructures that influence wing coloration and various mechanical and optical properties. This configuration plays a key role in ecological interactions, flight conditions, and thermoregulation, facilitated by interactions with environmental electromagnetic energy. In tropical forests, butterflies occupy distinct vertical habitats, experiencing significant light and temperature variations. While wing nanostructures have been widely studied, their variation across different vertical flight preferences remains underexplored. This study investigates the wing nanostructures of 12 tropical butterfly species from the Nymphalidae family, focusing on their optical, morphological, and thermal properties across different forest strata. We analyzed the optical response through diffuse reflectance in the UV, Vis, and NIR ranges, correlating these findings with nanostructural configuration and thermal stability using thermogravimetric analysis (TGA). Our results reveal a significant correlation between flight stratification and wing optical responses, alongside distinct nanostructural features within each stratum. This study demonstrates the variability in butterfly wing nanostructures along the vertical stratification of the forest to cope with environmental conditions, raising new questions for future research on eco-evolutionary flight and thermal adaptations. Additionally, this underscores the importance of understanding how these structural adaptations influence butterfly interactions with their environment and their evolutionary success across different forest strata.
蝴蝶翅膀鳞片具有复杂的纳米结构,这些结构影响着翅膀的颜色以及各种机械和光学特性。这种结构在生态相互作用、飞行条件和体温调节中起着关键作用,与环境电磁能的相互作用促进了这些过程。在热带森林中,蝴蝶占据着不同的垂直栖息地,经历着显著的光照和温度变化。虽然翅膀纳米结构已得到广泛研究,但它们在不同垂直飞行偏好中的变化仍未得到充分探索。本研究调查了蛱蝶科12种热带蝴蝶的翅膀纳米结构,重点关注它们在不同森林层次中的光学、形态和热性能。我们通过紫外、可见光和近红外波段的漫反射分析了光学响应,并使用热重分析(TGA)将这些结果与纳米结构配置和热稳定性相关联。我们的结果揭示了飞行分层与翅膀光学响应之间的显著相关性,以及每个层次内独特的纳米结构特征。这项研究证明了蝴蝶翅膀纳米结构沿森林垂直分层的变异性,以应对环境条件,为未来关于生态进化飞行和热适应的研究提出了新问题。此外,这凸显了理解这些结构适应如何影响蝴蝶与环境的相互作用以及它们在不同森林层次中的进化成功的重要性。