REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium.
Sensors (Basel). 2024 Oct 10;24(20):6523. doi: 10.3390/s24206523.
In this perspective paper, we propose a novel tech-driven method to evaluate body representations (BRs) in autistic individuals. Our goal is to deepen understanding of this complex condition by gaining continuous and real-time insights through digital phenotyping into the behavior of autistic adults. Our innovative method combines cross-sectional and longitudinal data gathering techniques to investigate and identify digital phenotypes related to BRs in autistic adults, diverging from traditional approaches. We incorporate ecological momentary assessment and time series data to capture the dynamic nature of real-life events for these individuals. Statistical techniques, including multivariate regression, time series analysis, and machine learning algorithms, offer a detailed comprehension of the complex elements that influence BRs. Ethical considerations and participant involvement in the development of this method are emphasized, while challenges, such as varying technological adoption rates and usability concerns, are acknowledged. This innovative method not only introduces a novel vision for evaluating BRs but also shows promise in integrating traditional and dynamic assessment approaches, fostering a more supportive atmosphere for autistic individuals during assessments compared to conventional methods.
在这篇观点论文中,我们提出了一种新颖的技术驱动方法来评估自闭症个体的身体表现(BRs)。我们的目标是通过对自闭症成年人的行为进行数字化表型分析,获得连续的实时见解,从而更深入地了解这种复杂的情况。我们的创新方法结合了横断面和纵向数据收集技术,以调查和识别与自闭症成年人 BRs 相关的数字表型,与传统方法不同。我们结合生态瞬时评估和时间序列数据来捕捉这些个体的现实生活事件的动态性质。统计技术,包括多元回归、时间序列分析和机器学习算法,提供了对影响 BRs 的复杂因素的详细理解。我们强调了该方法的伦理考虑因素和参与者的参与,同时也承认了一些挑战,如不同的技术采用率和可用性问题。这种创新方法不仅为评估 BRs 提供了新的视角,而且还展示了将传统和动态评估方法相结合的潜力,与传统方法相比,为自闭症个体的评估提供了更具支持性的环境。