Suppr超能文献

下一代数字健康技术中数字表型民主化与机器学习的伦理问题

Ethical Issues in Democratizing Digital Phenotypes and Machine Learning in the Next Generation of Digital Health Technologies.

作者信息

Mulvenna Maurice D, Bond Raymond, Delaney Jack, Dawoodbhoy Fatema Mustansir, Boger Jennifer, Potts Courtney, Turkington Robin

机构信息

School of Computing, Ulster University, Shore Road, Newtownabbey, Northern Ireland UK.

Imperial College School of Medicine, Imperial College London, South Kensington, London, UK.

出版信息

Philos Technol. 2021;34(4):1945-1960. doi: 10.1007/s13347-021-00445-8. Epub 2021 Mar 21.

Abstract

Digital phenotyping is the term given to the capturing and use of user log data from health and wellbeing technologies used in apps and cloud-based services. This paper explores ethical issues in making use of digital phenotype data in the arena of digital health interventions. Products and services based on digital wellbeing technologies typically include mobile device apps as well as browser-based apps to a lesser extent, and can include telephony-based services, text-based chatbots, and voice-activated chatbots. Many of these digital products and services are simultaneously available across many channels in order to maximize availability for users. Digital wellbeing technologies offer useful methods for real-time data capture of the interactions of users with the products and services. It is possible to design what data are recorded, how and where it may be stored, and, crucially, how it can be analyzed to reveal individual or collective usage patterns. The paper also examines digital phenotyping workflows, before enumerating the ethical concerns pertaining to different types of digital phenotype data, highlighting ethical considerations for collection, storage, and use of the data. A case study of a digital health app is used to illustrate the ethical issues. The case study explores the issues from a perspective of data prospecting and subsequent machine learning. The ethical use of machine learning and artificial intelligence on digital phenotype data and the broader issues in democratizing machine learning and artificial intelligence for digital phenotype data are then explored in detail.

摘要

数字表型分析是指对应用程序和基于云的服务中使用的健康与福祉技术的用户日志数据进行采集和利用。本文探讨了在数字健康干预领域利用数字表型数据时的伦理问题。基于数字福祉技术的产品和服务通常包括移动设备应用程序,在较小程度上还包括基于浏览器的应用程序,并且可以包括基于电话的服务、基于文本的聊天机器人和语音激活的聊天机器人。许多此类数字产品和服务可同时通过多种渠道提供,以便最大限度地提高用户的可用性。数字福祉技术为实时捕获用户与产品及服务的交互提供了有用的方法。可以设计记录哪些数据、如何存储以及存储位置,至关重要的是,如何对其进行分析以揭示个人或集体的使用模式。在列举与不同类型数字表型数据相关的伦理问题之前,本文还研究了数字表型分析工作流程,强调了数据收集、存储和使用方面的伦理考量。通过一个数字健康应用程序的案例研究来说明伦理问题。该案例研究从数据探查及后续机器学习的角度探讨了这些问题。随后详细探讨了在数字表型数据上伦理地使用机器学习和人工智能,以及在数字表型数据方面使机器学习和人工智能民主化的更广泛问题。

相似文献

2
Digital transformation of mental health services.心理健康服务的数字化转型
Npj Ment Health Res. 2023 Aug 22;2(1):13. doi: 10.1038/s44184-023-00033-y.

引用本文的文献

3
Digital transformation of mental health services.心理健康服务的数字化转型
Npj Ment Health Res. 2023 Aug 22;2(1):13. doi: 10.1038/s44184-023-00033-y.

本文引用的文献

2
Predicting personality from patterns of behavior collected with smartphones.从智能手机收集的行为模式预测人格。
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17680-17687. doi: 10.1073/pnas.1920484117. Epub 2020 Jul 14.
3
Digital Phenotyping: Ethical Issues, Opportunities, and Threats.数字表型分析:伦理问题、机遇与威胁。
Front Psychiatry. 2020 May 27;11:473. doi: 10.3389/fpsyt.2020.00473. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验