Suppr超能文献

Enhanced Abandoned Object Detection through Adaptive Dual-Background Modeling and SAO-YOLO Integration.

作者信息

Zhou Lei, Xu Jingke

机构信息

College of Computer Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.

Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction, Shenyang 110168, China.

出版信息

Sensors (Basel). 2024 Oct 12;24(20):6572. doi: 10.3390/s24206572.

Abstract

Abandoned object detection is a critical task in the field of public safety. However, existing methods perform poorly when detecting small and occluded objects, leading to high false detection and missed detection rates. To address this issue, this paper proposes an abandoned object detection method that integrates an adaptive dual-background model with SAO-YOLO (Small Abandoned Object YOLO). The goal is to reduce false and missed detection rates for small and occluded objects, thereby improving overall detection accuracy. First, the paper introduces an adaptive dual-background model that adjusts according to scene changes, reducing noise interference in the background model. When combined with an improved PFSM (Pixel-based Finite State Machine) model, this enhances detection accuracy and robustness. Next, a network model called SAO-YOLO is designed. Key improvements within this model include the SAO-FPN (Small Abandoned Object FPN) feature extraction network, which fully extracts features of small objects, and a lightweight decoupled head, SODHead (Small Object Detection Head), which precisely extracts local features and enhances detection accuracy through multi-scale feature fusion. Finally, experimental results show that SAO-YOLO increases mAP@0.5 and mAP@0.5:0.95 by 9.0% and 5.1%, respectively, over the baseline model. It outperforms other advanced detection models. Ultimately, after a series of experiments on the ABODA, PETS2006, and AVSS2007 datasets, the proposed method achieved an average detection precious of 91.1%, surpassing other advanced methods. It significantly outperforms other advanced detection methods. This approach notably reduces false and missed detections, especially for small and occluded objects.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c0a/11510867/3448a808b901/sensors-24-06572-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验