Dai Guowei, Luo Shuai, Chen Hu, Ji Yulong
College of Computer Science, Sichuan University, Chengdu 610065, China.
National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.
Sensors (Basel). 2024 Oct 13;24(20):6590. doi: 10.3390/s24206590.
As global carbon reduction initiatives progress and the new energy sector rapidly develops, photovoltaic (PV) power generation is playing an increasingly significant role in renewable energy. Accurate PV output forecasting, influenced by meteorological factors, is essential for efficient energy management. This paper presents an optimal hybrid forecasting strategy, integrating bidirectional temporal convolutional networks (BiTCN), dynamic convolution (DC), bidirectional long short-term memory networks (BiLSTM), and a novel mixed-state space model (Mixed-SSM). The mixed-SSM combines the state space model (SSM), multilayer perceptron (MLP), and multi-head self-attention mechanism (MHSA) to capture complementary temporal, nonlinear, and long-term features. Pearson and Spearman correlation analyses are used to select features strongly correlated with PV output, improving the prediction correlation coefficient () by at least 0.87%. The K-Means++ algorithm further enhances input data features, achieving a maximum of 86.9% and a positive gain of 6.62%. Compared with BiTCN variants such as BiTCN-BiGRU, BiTCN-transformer, and BiTCN-LSTM, the proposed method delivers a mean absolute error (MAE) of 1.1%, root mean squared error (RMSE) of 1.2%, and an of 89.1%. These results demonstrate the model's effectiveness in forecasting PV power and supporting low-carbon, safe grid operation.
随着全球碳减排举措的推进以及新能源领域的快速发展,光伏发电在可再生能源中发挥着越来越重要的作用。受气象因素影响,准确的光伏输出功率预测对于高效能源管理至关重要。本文提出了一种最优混合预测策略,该策略集成了双向时间卷积网络(BiTCN)、动态卷积(DC)、双向长短期记忆网络(BiLSTM)以及一种新型混合状态空间模型(Mixed-SSM)。混合状态空间模型将状态空间模型(SSM)、多层感知器(MLP)和多头自注意力机制(MHSA)相结合,以捕捉互补的时间、非线性和长期特征。使用皮尔逊和斯皮尔曼相关性分析来选择与光伏输出高度相关的特征,将预测相关系数()提高了至少0.87%。K-Means++算法进一步增强了输入数据特征,最大达到86.9%,正增益为6.62%。与BiTCN-BiGRU、BiTCN-transformer和BiTCN-LSTM等BiTCN变体相比,所提出的方法平均绝对误差(MAE)为1.1%,均方根误差(RMSE)为1.2%,为89.1%。这些结果证明了该模型在预测光伏发电和支持低碳、安全电网运行方面的有效性。