Suppr超能文献

vEMstitch:一种用于体积电子显微镜全自动图像拼接的算法。

vEMstitch: an algorithm for fully automatic image stitching of volume electron microscopy.

机构信息

The Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Shandong 266000, China.

The Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae076.

Abstract

BACKGROUND

As software and hardware have developed, so has the scale of research into volume electron microscopy (vEM), leading to ever-increasing resolution. Usually, data collection is followed by image stitching: the same area is subjected to high-resolution imaging with a certain overlap, and then the images are stitched together to achieve ultrastructure with large scale and high resolution simultaneously. However, there is currently no perfect method for image stitching, especially when the global feature distribution of the sample is uneven and the feature points of the overlap area cannot be matched accurately, which results in ghosting of the fusion area.

RESULTS

We have developed a novel algorithm called vEMstitch to solve these problems, aiming for seamless and clear stitching of high-resolution images. In vEMstitch, the image transformation model is constructed as a combination of global rigid and local elastic transformation using weighted pixel displacement fields. Specific local geometric constraints and feature reextraction strategies are incorporated to ensure that the transformation model accurately and completely reflects the characteristics of biological distortions. To demonstrate the applicability of vEMstitch, we conducted thorough testing on simulated datasets involving different transformation combinations, consistently showing promising performance. Furthermore, in real data sample experiments, vEMstitch successfully gives clear ultrastructure in the stitching region, reaffirming the effectiveness of the algorithm.

CONCLUSIONS

vEMstitch serves as a valuable tool for large-field and high-resolution image stitching. The clear stitched regions facilitate better visualization and identification in vEM analysis. The source code is available at https://github.com/HeracleBT/vEMstitch.

摘要

背景

随着软硬件的发展,体视学电子显微镜(vEM)的研究规模不断扩大,分辨率也越来越高。通常,数据采集后需要进行图像拼接:对同一区域进行具有一定重叠的高分辨率成像,然后将图像拼接在一起,同时实现大尺度和高分辨率的超微结构。然而,目前还没有完美的图像拼接方法,特别是当样本的全局特征分布不均匀且重叠区域的特征点无法准确匹配时,会导致融合区域出现重影。

结果

我们开发了一种名为 vEMstitch 的新算法来解决这些问题,旨在实现高分辨率图像的无缝和清晰拼接。在 vEMstitch 中,图像变换模型构建为使用加权像素位移场的全局刚性和局部弹性变换的组合。具体的局部几何约束和特征重新提取策略被纳入其中,以确保变换模型准确而完整地反映生物变形的特征。为了展示 vEMstitch 的适用性,我们对涉及不同变换组合的模拟数据集进行了全面测试,结果始终表现出良好的性能。此外,在真实数据样本实验中,vEMstitch 成功地在拼接区域给出了清晰的超微结构,再次证实了算法的有效性。

结论

vEMstitch 是一种用于大视场和高分辨率图像拼接的有价值工具。清晰拼接的区域有助于在 vEM 分析中更好地可视化和识别。该算法的源代码可在 https://github.com/HeracleBT/vEMstitch 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db51/11512480/311f0a019826/giae076fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验