Allen Institute, Seattle, WA, USA.
Voxa, Seattle, WA, USA.
Nat Commun. 2020 Oct 2;11(1):4949. doi: 10.1038/s41467-020-18659-3.
Electron microscopy (EM) is widely used for studying cellular structure and network connectivity in the brain. We have built a parallel imaging pipeline using transmission electron microscopes that scales this technology, implements 24/7 continuous autonomous imaging, and enables the acquisition of petascale datasets. The suitability of this architecture for large-scale imaging was demonstrated by acquiring a volume of more than 1 mm of mouse neocortex, spanning four different visual areas at synaptic resolution, in less than 6 months. Over 26,500 ultrathin tissue sections from the same block were imaged, yielding a dataset of more than 2 petabytes. The combined burst acquisition rate of the pipeline is 3 Gpixel per sec and the net rate is 600 Mpixel per sec with six microscopes running in parallel. This work demonstrates the feasibility of acquiring EM datasets at the scale of cortical microcircuits in multiple brain regions and species.
电子显微镜(EM)广泛用于研究大脑中的细胞结构和网络连接。我们构建了一个使用透射电子显微镜的并行成像管道,该管道扩展了这项技术,实现了 24/7 连续自主成像,并能够获取 petascale 级别的数据集。该架构在大规模成像方面的适用性已通过在不到 6 个月的时间内获取超过 1 毫米的小鼠新皮层体积得到证明,该体积跨越四个不同的视觉区域,分辨率达到突触水平。从同一块组织中拍摄了超过 26500 张超薄组织切片,生成了超过 2000PB 的数据集。该管道的组合突发采集速率为 3Gpixel/秒,在 6 台显微镜并行运行时的净速率为 600Mpixel/秒。这项工作证明了在多个脑区和物种中获取皮质微电路规模的 EM 数据集的可行性。