Lombardo Elia, Velezmoro Laura, Marschner Sebastian N, Rabe Moritz, Tejero Claudia, Papadopoulou Christianna I, Sui Zhuojie, Reiner Michael, Corradini Stefanie, Belka Claus, Kurz Christopher, Riboldi Marco, Landry Guillaume
Department of Radiation Oncology, LMU University Hospital, LMU Munich.
Department of Radiation Oncology, LMU University Hospital, LMU Munich.
Int J Radiat Oncol Biol Phys. 2025 Jul 15;122(4):827-837. doi: 10.1016/j.ijrobp.2024.10.021. Epub 2024 Oct 24.
We propose a tumor tracking framework for 2D cine magnetic resonance imaging (MRI) based on a pair of deep learning (DL) models relying on patient-specific (PS) training.
The chosen DL models are: (1) an image registration transformer and (2) an auto-segmentation convolutional neural network (CNN). We collected over 1,400,000 cine MRI frames from 219 patients treated on a 0.35 T MRI-linac plus 7500 frames from additional 35 patients that were manually labeled and subdivided into fine-tuning, validation, and testing sets. The transformer was first trained on the unlabeled data (without segmentations). We then continued training (with segmentations) either on the fine-tuning set or for PS models based on 8 randomly selected frames from the first 5 seconds of each patient's cine MRI. The PS auto-segmentation CNN was trained from scratch with the same 8 frames for each patient, without pre-training. Furthermore, we implemented B-spline image registration as a conventional model, as well as different baselines. Output segmentations of all models were compared on the testing set using the Dice similarity coefficient, the 50% and 95% Hausdorff distance (HD/HD), and the root-mean-square-error of the target centroid in superior-inferior direction.
The PS transformer and CNN significantly outperformed all other models, achieving a median (interquartile range) dice similarity coefficient of 0.92 (0.03)/0.90 (0.04), HD of 1.0 (0.1)/1.0 (0.4) mm, HD of 3.1 (1.9)/3.8 (2.0) mm, and root-mean-square-error of the target centroid in superior-inferior direction of 0.7 (0.4)/0.9 (1.0) mm on the testing set. Their inference time was about 36/8 ms per frame and PS fine-tuning required 3 min for labeling and 8/4 min for training. The transformer was better than the CNN in 9/12 patients, the CNN better in 1/12 patients, and the 2 PS models achieved the same performance on the remaining 2/12 testing patients.
For targets in the thorax, abdomen, and pelvis, we found 2 PS DL models to provide accurate real-time target localization during MRI-guided radiotherapy.
我们提出了一种基于一对深度学习(DL)模型的二维电影磁共振成像(MRI)肿瘤跟踪框架,该模型依赖于患者特异性(PS)训练。
所选的DL模型为:(1)图像配准变换器和(2)自动分割卷积神经网络(CNN)。我们从219例在0.35T MRI直线加速器上接受治疗的患者中收集了超过140万帧电影MRI图像,另外从35例患者中收集了7500帧图像,并进行了手动标注,然后细分为微调、验证和测试集。变换器首先在未标注数据(无分割)上进行训练。然后,我们基于每个患者电影MRI前5秒中的8个随机选择的帧,在微调集上或针对PS模型继续训练(有分割)。PS自动分割CNN针对每个患者使用相同的8帧从头开始训练,无需预训练。此外,我们实现了B样条图像配准作为传统模型以及不同的基线。使用Dice相似系数、50%和95%豪斯多夫距离(HD/HD)以及目标质心在上下方向的均方根误差,在测试集上比较所有模型的输出分割。
PS变换器和CNN显著优于所有其他模型,在测试集上实现的中位数(四分位间距)Dice相似系数为0.92(0.03)/0.90(0.04),HD为1.0(0.1)/1.0(0.4)mm,HD为3.1(1.9)/3.8(2.0)mm,目标质心在上下方向的均方根误差为0.7(0.4)/0.9(1.0)mm。它们的推理时间约为每帧36/8毫秒,PS微调需要3分钟进行标注,8/4分钟进行训练。变换器在9/12例患者中优于CNN,CNN在1/12例患者中更好,并且这两个PS模型在其余2/12例测试患者中表现相同。
对于胸部、腹部和骨盆中的目标,我们发现两个PS DL模型在MRI引导的放射治疗期间能够提供准确的实时目标定位。