Suppr超能文献

计算免疫肿瘤学的十大挑战与机遇。

Ten challenges and opportunities in computational immuno-oncology.

机构信息

UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

J Immunother Cancer. 2024 Oct 26;12(10):e009721. doi: 10.1136/jitc-2024-009721.

Abstract

Immuno-oncology has transformed the treatment of cancer, with several immunotherapies becoming the standard treatment across histologies. Despite these advancements, the majority of patients do not experience durable clinical benefits, highlighting the imperative for ongoing advancement in immuno-oncology. Computational immuno-oncology emerges as a forefront discipline that draws on biomedical data science and intersects with oncology, immunology, and clinical research, with the overarching goal to accelerate the development of effective and safe immuno-oncology treatments from the laboratory to the clinic. In this review, we outline 10 critical challenges and opportunities in computational immuno-oncology, emphasizing the importance of robust computational strategies and interdisciplinary collaborations amid the constantly evolving interplay between clinical needs and technological innovation.

摘要

免疫肿瘤学改变了癌症的治疗方式,几种免疫疗法已经成为各种组织学的标准治疗方法。尽管取得了这些进展,但大多数患者并没有获得持久的临床获益,这凸显了在免疫肿瘤学领域不断取得进展的必要性。计算免疫肿瘤学是一个前沿学科,它利用生物医学数据科学,并与肿瘤学、免疫学和临床研究交叉,其总体目标是加速从实验室到临床的有效和安全的免疫肿瘤学治疗方法的发展。在这篇综述中,我们概述了计算免疫肿瘤学中的 10 个关键挑战和机遇,强调了在临床需求和技术创新之间不断变化的相互作用中,稳健的计算策略和跨学科合作的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3470/11529678/908486c3dc48/jitc-12-10-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验