Akgul Busra, Gulcan Cansu, Tornaci Selay, Erginer Merve, Toksoy Oner Ebru, Abamor Emrah Sefik, Acar Serap, Allahverdiyev Adil M
Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
IBSB, Department of Bioengineering, Marmara University, Istanbul, 34854, Turkey.
Macromol Biosci. 2025 Jan;25(1):e2400291. doi: 10.1002/mabi.202400291. Epub 2024 Oct 26.
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
本研究的主要目的是构建用聚左旋糖聚合物增强的径向排列的聚己内酯(PCL)纳米纤维,并深入研究其体外生物活性。首先,将嗜盐栖热袍菌(HL)多糖水解(hHL)并进行硫酸化,以获得具有肝素模拟特性的硫酸化水解嗜盐栖热袍菌(ShHL)基材料。然后,进行优化研究,通过静电纺丝制备同轴生成的径向排列的聚己内酯(PCL)-ShHL纳米纤维。通过傅里叶变换红外光谱(FTIR)和带能谱X射线的场发射扫描电子显微镜(FESEM-EDX)分析对所得纳米纤维进行表征,并进行力学性能、接触角测量、生物降解性和溶胀测试。之后,通过MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐)试验分析人工鼓膜的细胞毒性,并探讨它们对细胞增殖、细胞粘附、伤口愈合过程的影响。此外,还进行了额外的FESEM成像,以显示成纤维细胞与纳米纤维之间的相互作用。根据分析测量结果,检测到PCL-ShHL纳米纤维:i)纤维直径更小;ii)生物降解性更强;iii)亲水性更强;iv)与PCL纳米纤维相比,具有优异的力学性能。此外,还发现与PCL纳米纤维相比,PCL-ShHL纳米纤维能显著提高细胞粘附、增殖和体外伤口愈合能力。根据所得结果推测,新合成的聚左旋糖和PCL介导的纳米纤维对鼓膜穿孔的愈合非常有前景。