Hayat Sakander, Malik Muhammad Yasir Hayat, Alanazi Seham J F, Fazal Saima, Imran Muhammad, Azeem Muhammad
Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jln Tungku Link, Gadong, BE1410, Brunei Darussalam, Brunei.
Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan.
Sci Rep. 2024 Oct 26;14(1):25494. doi: 10.1038/s41598-024-72896-w.
In the fields of mathematics, chemistry, and the physical sciences, graph theory plays a substantial role. Using modern mathematical techniques, quantitative structure-property relationship (QSPR) modeling predicts the physical, synthetic, and natural properties of substances based only on their chemical composition. For a chemical graph, the temperature of a vertex is a local property introduced by Fajtlowicz (1988). A temperature-based graphical descriptor is structured based on temperatures of vertices. Involving a non-zero real parameter , the general F-temperature index is a temperature index having strong efficacy. In this paper, we employ discrete optimization and regression analysis to find optimal value(s) of for which the prediction potential of and the total -electron energy of polycyclic hydrocarbons is the strongest. This, in turn, answers an open problem proposed by Hayat & Liu (2024). Applications of the optimal values for are presented a two-parametric family of carbon nanocones in predicting their with significantly higher accuracy.
在数学、化学和物理科学领域,图论发挥着重要作用。利用现代数学技术,定量结构-性质关系(QSPR)建模仅基于物质的化学成分来预测其物理、合成和天然性质。对于化学图,顶点温度是由法伊特洛维茨(1988年)引入的局部性质。基于温度的图形描述符是根据顶点温度构建的。涉及一个非零实参数 ,一般的F-温度指数是具有强大功效的温度指数。在本文中,我们采用离散优化和回归分析来找到 的最优值,对于该最优值,多环烃的 和总 -电子能量的预测潜力最强。这反过来回答了哈亚特和刘(2024年)提出的一个开放性问题。 的最优值在预测一类双参数碳纳米锥的 时具有显著更高的准确性,并给出了相关应用。