Lai Pei-Yu, Shih Tai-Yu, Chang Yu-Huan, Chang Chung-Hsing, Kuo Wen-Chuan
Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Hualien Tzu chi Hospital, Buddhist Tzu Chi Medical Foundation, Skin Institute, Hualien, Taiwan.
J Biophotonics. 2025 Jan;18(1):e202400277. doi: 10.1002/jbio.202400277. Epub 2024 Oct 27.
Malignant melanoma is the most severe skin cancer with a rising incidence rate. Several noninvasive image techniques and computer-aided diagnosis systems have been developed to help find melanoma in its early stages. However, most previous research utilized dermoscopic images to build a diagnosis model, and only a few used prospective datasets. This study develops and evaluates a convolutional neural network (CNN) for melanoma identification and risk prediction using optical coherence tomography (OCT) imaging of mice skin. Longitudinal tests are performed on four animal models: melanoma mice, dysplastic nevus mice, and their respective controls. The CNN classifies melanoma and healthy tissues with high sensitivity (0.99) and specificity (0.98) and also assigns a risk score to each image based on the probability of melanoma presence, which may facilitate early diagnosis and management of melanoma in clinical settings.
恶性黑色素瘤是最严重的皮肤癌,其发病率呈上升趋势。已经开发了几种非侵入性图像技术和计算机辅助诊断系统来帮助在早期发现黑色素瘤。然而,以前的大多数研究利用皮肤镜图像来建立诊断模型,只有少数研究使用前瞻性数据集。本研究开发并评估了一种卷积神经网络(CNN),用于使用小鼠皮肤的光学相干断层扫描(OCT)成像进行黑色素瘤识别和风险预测。对四种动物模型进行了纵向测试:黑色素瘤小鼠、发育异常痣小鼠及其各自的对照。CNN以高灵敏度(0.99)和特异性(0.98)对黑色素瘤和健康组织进行分类,并根据黑色素瘤存在的概率为每个图像分配一个风险评分,这可能有助于临床环境中黑色素瘤的早期诊断和管理。