Suppr超能文献

基于贝叶斯优化的锂离子电池非晶态SiO负极锂化过程的第一性原理研究

First-principles study on the lithiation process of amorphous SiO anode for Li-ion batteries with Bayesian optimization.

作者信息

Shintaku Ryoya, Tamura Tomoyuki, Nogami Shogo, Karasuyama Masayuki, Hirose Takakazu

机构信息

Division of Applied Physics, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.

Division of Computational Intelligence, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.

出版信息

Phys Chem Chem Phys. 2024 Nov 7;26(43):27561-27566. doi: 10.1039/d4cp02533d.

Abstract

Amorphous silicon monoxide (a-SiO), which contains Si atoms with various valence states, has attracted much attention as a high-performance anode material for lithium (Li) ion batteries (LIBs). Although current experiments have provided some information during charge/discharge cycles, further investigation of structural changes at the atomic scale is needed. To investigate the lithiation process of a-SiO using first-principles simulations and machine learning techniques, we developed a computational code employing Bayesian optimization to efficiently identify stable sites for Li insertion in the large search-space of amorphous models to reproduce the actual lithiation process and compared this approach to the conventional random scheme by applying it to an a-SiO model previously generated with neural network potentials. The lithiation process based on Bayesian optimization resulted in lower formation energies compared to the conventional random scheme, indicating a more stable structure. During lithiation, Li atoms tended to enter the silicon (Si) phase after the SiO phase, in agreement with experimental results. We analyzed the structural changes and observed significant differences in the structural evolution between the conventional and new schemes. Our study highlights the significant influence of the lithiation process on the structural transformation of a-SiO materials, which in turn affects the reversible capacity of the material. These findings will provide a framework for improving the performance and lifetime of a-SiO materials.

摘要

含有多种价态硅原子的非晶态一氧化硅(a-SiO)作为锂离子电池(LIBs)的高性能负极材料备受关注。尽管目前的实验在充放电循环过程中提供了一些信息,但仍需要在原子尺度上进一步研究结构变化。为了使用第一性原理模拟和机器学习技术研究a-SiO的锂化过程,我们开发了一种计算代码,采用贝叶斯优化在非晶模型的大搜索空间中有效地识别锂插入的稳定位点,以重现实际的锂化过程,并将这种方法与传统的随机方案进行比较,将其应用于先前用神经网络势生成的a-SiO模型。与传统随机方案相比,基于贝叶斯优化的锂化过程导致更低的形成能,表明结构更稳定。在锂化过程中,锂原子倾向于在SiO相之后进入硅(Si)相,这与实验结果一致。我们分析了结构变化,并观察到传统方案和新方案在结构演变上的显著差异。我们的研究突出了锂化过程对a-SiO材料结构转变的重大影响,这反过来又影响了材料的可逆容量。这些发现将为提高a-SiO材料的性能和寿命提供一个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验