Shakeel Noshaba, Khan Junaid, Al-Kahtani Abdullah A
Department of Physics, Abbottabad University of Science and Technology Khyber Pakhtunkhwa Pakistan.
Department of Chemical and Biological Engineering, Gachon University 1342 Seongnam-daero Seongnam 13120 Republic of Korea.
RSC Adv. 2024 Oct 25;14(46):33941-33951. doi: 10.1039/d4ra05790b. eCollection 2024 Oct 23.
Metal-organic frameworks (MOFs) have garnered substantial attention as promising candidates for electrode materials due to their intriguing electrochemical properties. However, the quest for enhanced energy density and electrical conductivity persists. Manipulating surface morphology emerges as a pivotal strategy to modulate these attributes and unlock the full potential of MOFs in electrochemical applications. This research delves into a pioneering exploration of copper metal-organic framework synthesis employing pyridine-4-carboxylic acid hydrothermal and sonochemical routes, focusing on sculpting its surface morphology. Through meticulous comparative analysis, we unveil the distinct morphological features between the bulk and thin flakes crafted each method. Notably, our findings highlight the remarkable superiority of the sonochemical approach in delivering refined outcomes (594.2 C g at 1 A g to 331.0 C g at 16 A g) over its hydrothermal counterpart. Furthermore, the application of the sono-synthesized sample in an asymmetric device reveals a specific energy of 74.92 W h kg at 850 W kg, while it sustains an exceptional 13 765 W kg, maintaining a noteworthy specific energy of 34.4 W h kg. The pursuit of refining surface morphology stands as a critical avenue in the ongoing endeavor to optimize the electrochemical performance of MOFs, paving the way for their widespread utilization in advanced energy storage technologies.
金属有机框架材料(MOFs)因其引人入胜的电化学性质,作为电极材料的潜在候选者已获得了广泛关注。然而,对提高能量密度和电导率的追求仍在继续。控制表面形态成为调节这些属性并释放MOFs在电化学应用中全部潜力的关键策略。本研究深入探讨了采用吡啶-4-羧酸通过水热和超声化学路线合成铜金属有机框架材料的开创性探索,重点是塑造其表面形态。通过细致的比较分析,我们揭示了通过每种方法制备的块状和薄片之间不同的形态特征。值得注意的是,我们的研究结果突出了超声化学方法在提供精细结果方面(在1 A g时为594.2 C g至在16 A g时为331.0 C g)相对于水热法的显著优势。此外,将超声合成的样品应用于非对称器件中,在850 W kg时显示出74.92 W h kg的比能量,同时它维持了高达13765 W kg的出色功率密度,并保持了34.4 W h kg的显著比能量。追求优化表面形态是当前优化MOFs电化学性能努力中的关键途径,为其在先进储能技术中的广泛应用铺平了道路。