Suppr超能文献

詹姆斯-斯坦估计器提高了人类运动学和代谢数据的准确性和样本效率。

James-Stein estimator improves accuracy and sample efficiency in human kinematic and metabolic data.

作者信息

Alwan Aya, Srinivasan Manoj

机构信息

Mechanical and Aerospace Engineering, The Ohio State University, 201, W. 19th Ave, Columbus, 43210, Ohio, United States.

出版信息

bioRxiv. 2024 Oct 17:2024.10.07.616339. doi: 10.1101/2024.10.07.616339.

Abstract

Human biomechanical data are often accompanied with measurement noise and behavioral variability. Errors due to such noise and variability are usually exaggerated by fewer trials or shorter trial durations, and could be reduced using more trials or longer trial durations. Speeding up such data collection by lowering number of trials or trial duration, while improving the accuracy of statistical estimates, would be of particular interest in wearable robotics applications and when the human population studied is vulnerable (e.g., the elderly). Here, we propose the use of the James-Stein estimator (JSE) to improve statistical estimates with a given amount of data, or reduce the amount of data needed for a given accuracy. The JSE is a shrinkage estimator that produces a uniform reduction in the summed squared errors when compared to the more familiar maximum likelihood estimator (MLE), simple averages, or other least squares regressions. When data from multiple human participants are available, an individual participant's JSE can improve upon MLE by incorporating information from all participants, improving overall estimation accuracy on average. Here, we apply the JSE to multiple time-series of kinematic and metabolic data from the following parameter estimation problems: foot placement control during level walking, energy expenditure during circle walking, and energy expenditure during resting. We show that the resulting estimates improve accuracy - that is, the James-Stein estimates have lower summed squared error from the 'true' value compared to more conventional estimates.

摘要

人体生物力学数据常常伴随着测量噪声和行为变异性。由于此类噪声和变异性导致的误差通常会因试验次数较少或试验持续时间较短而被放大,而通过增加试验次数或延长试验持续时间则可以减少这些误差。在可穿戴机器人应用中,以及当所研究的人群较为脆弱(例如老年人)时,在提高统计估计准确性的同时,通过减少试验次数或试验持续时间来加快此类数据收集将特别有意义。在此,我们建议使用詹姆斯 - 斯坦估计器(JSE),以在给定的数据量下提高统计估计,或者减少达到给定准确性所需的数据量。JSE是一种收缩估计器,与更常见的最大似然估计器(MLE)、简单平均值或其他最小二乘回归相比,它能使平方和误差产生均匀的减少。当有来自多个参与者的人体数据时,个体参与者的JSE可以通过纳入所有参与者的信息来改进MLE,平均而言提高整体估计准确性。在此,我们将JSE应用于以下参数估计问题的多个运动学和代谢数据的时间序列:水平行走时的足部放置控制、圆周行走时的能量消耗以及休息时的能量消耗。我们表明,所得估计提高了准确性——也就是说,与更传统的估计相比,詹姆斯 - 斯坦估计与“真实”值的平方和误差更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4101/12233415/0faa6252d2a5/nihpp-2024.10.07.616339v3-f0006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验