Alwan Aya, Srinivasan Manoj
Mechanical and Aerospace Engineering, The Ohio State University, 201, W. 19th Ave., Columbus, OH, 43210, USA.
Ann Biomed Eng. 2025 Apr 16. doi: 10.1007/s10439-025-03718-x.
Human biomechanical data are often accompanied with measurement noise and behavioral variability. Errors due to such noise and variability are usually exaggerated by fewer trials or shorter trial durations and could be reduced using more trials or longer trial durations. Speeding up such data collection by lowering number of trials or trial duration, while improving the accuracy of statistical estimates, would be of particular interest in wearable robotics applications and when the human population studied is vulnerable (e.g., the elderly). Here, we propose the use of the James-Stein estimator (JSE) to improve statistical estimates with a given amount of data or reduce the amount of data needed for a given accuracy. The JSE is a shrinkage estimator that produces a uniform reduction in the summed squared errors when compared with the more familiar maximum likelihood estimator (MLE), simple averages, or other least squares regressions. When data from multiple human participants are available, an individual participant's JSE can improve upon MLE by incorporating information from all participants, improving overall estimation accuracy on average. Here, we apply the JSE to multiple time series of kinematic and metabolic data from the following parameter estimation problems: foot placement control during level walking, energy expenditure during circle walking, and energy expenditure during resting. We show that the resulting estimates improve accuracy-that is, the James-Stein estimates have lower summed squared error from the 'true' value compared with more conventional estimates.
人体生物力学数据常常伴随着测量噪声和行为变异性。由于此类噪声和变异性导致的误差通常会因试验次数较少或试验持续时间较短而被放大,而使用更多试验次数或更长试验持续时间则可以减少这些误差。在可穿戴机器人应用中,以及在所研究的人群较为脆弱(例如老年人)的情况下,通过减少试验次数或试验持续时间来加快此类数据收集,同时提高统计估计的准确性,将具有特别重要的意义。在此,我们提议使用詹姆斯 - 斯坦估计器(JSE)来在给定数据量的情况下提高统计估计的准确性,或者减少达到给定准确性所需的数据量。JSE是一种收缩估计器,与更常见的最大似然估计器(MLE)、简单平均值或其他最小二乘回归相比,它能使平方和误差产生均匀的减少。当有来自多个个体参与者的数据时,通过纳入所有参与者的信息,单个参与者的JSE可以在MLE的基础上进行改进,平均而言提高整体估计准确性。在此,我们将JSE应用于以下参数估计问题的多个运动学和代谢数据的时间序列:水平行走时的足部放置控制、圆周行走时的能量消耗以及静息时的能量消耗。我们表明,所得估计提高了准确性——也就是说,与更传统的估计相比,詹姆斯 - 斯坦估计与“真实”值的平方和误差更低。