Suppr超能文献

通过神经后验估计从RNA病毒单倍型推断突变率、选择和上位性

Mutation rate, selection, and epistasis inferred from RNA virus haplotypes via neural posterior estimation.

作者信息

Caspi Itamar, Meir Moran, Ben Nun Nadav, Abu Rass Reem, Yakhini Uri, Stern Adi, Ram Yoav

机构信息

Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.

Edmond J. Safra Center for Bioinformatics, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.

出版信息

Virus Evol. 2023 May 20;9(1):vead033. doi: 10.1093/ve/vead033. eCollection 2023.

Abstract

RNA viruses are particularly notorious for their high levels of genetic diversity, which is generated through the forces of mutation and natural selection. However, disentangling these two forces is a considerable challenge, and this may lead to widely divergent estimates of viral mutation rates, as well as difficulties in inferring the fitness effects of mutations. Here, we develop, test, and apply an approach aimed at inferring the mutation rate and key parameters that govern natural selection, from haplotype sequences covering full-length genomes of an evolving virus population. Our approach employs , a computational technique that applies simulation-based inference with neural networks to jointly infer multiple model parameters. We first tested our approach on synthetic data simulated using different mutation rates and selection parameters while accounting for sequencing errors. Reassuringly, the inferred parameter estimates were accurate and unbiased. We then applied our approach to haplotype sequencing data from a serial passaging experiment with the MS2 bacteriophage, a virus that parasites . We estimated that the mutation rate of this phage is around 0.2 mutations per genome per replication cycle (95% highest density interval: 0.051-0.56). We validated this finding with two different approaches based on single-locus models that gave similar estimates but with much broader posterior distributions. Furthermore, we found evidence for reciprocal sign epistasis between four strongly beneficial mutations that all reside in an RNA stem loop that controls the expression of the viral lysis protein, responsible for lysing host cells and viral egress. We surmise that there is a fine balance between over- and underexpression of lysis that leads to this pattern of epistasis. To recap, we have developed an approach for joint inference of the mutation rate and selection parameters from full haplotype data with sequencing errors and used it to reveal features governing MS2 evolution.

摘要

RNA病毒因其高度的遗传多样性而特别声名狼藉,这种多样性是通过突变和自然选择的力量产生的。然而,区分这两种力量是一项相当大的挑战,这可能导致对病毒突变率的估计差异很大,以及在推断突变的适应性效应方面存在困难。在这里,我们开发、测试并应用了一种方法,旨在从覆盖不断进化的病毒群体全长基因组的单倍型序列中推断突变率和控制自然选择的关键参数。我们的方法采用了一种计算技术,该技术将基于模拟的推理与神经网络相结合,以联合推断多个模型参数。我们首先在使用不同突变率和选择参数模拟的合成数据上测试了我们的方法,同时考虑了测序错误。令人放心的是,推断出的参数估计是准确且无偏差的。然后,我们将我们的方法应用于来自MS2噬菌体连续传代实验的单倍型测序数据,MS2噬菌体是一种寄生于……的病毒。我们估计这种噬菌体的突变率约为每个复制周期每个基因组0.2个突变(95%最高密度区间:0.051 - 0.56)。我们用基于单基因座模型的两种不同方法验证了这一发现,这两种方法给出了相似的估计,但后验分布更宽。此外,我们发现了四个强烈有益突变之间的相互符号上位性的证据,这些突变都位于一个控制病毒裂解蛋白表达的RNA茎环中,该蛋白负责裂解宿主细胞和病毒释放。我们推测,裂解蛋白表达的过度和不足之间存在微妙的平衡,导致了这种上位性模式。总之,我们开发了一种从带有测序错误的完整单倍型数据中联合推断突变率和选择参数的方法,并利用它揭示了控制MS2进化的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/005c/10256221/f79b7e0c35e0/vead033f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验