Suppr超能文献

连续体机器人的统一形状和外部负载状态估计

Unified Shape and External Load State Estimation for Continuum Robots.

作者信息

Ferguson James M, Rucker D Caleb, Webster Robert J

机构信息

Vanderbilt University, Nashville, TN 37235, USA.

The University of Tennessee, Knoxville, TN 37996, USA.

出版信息

IEEE Trans Robot. 2024;40:1813-1827. doi: 10.1109/tro.2024.3360950. Epub 2024 Feb 1.

Abstract

Continuum robots navigate narrow, winding passageways while safely and compliantly interacting with their environments. Sensing the robot's shape under these conditions is often done indirectly, using a few coarsely distributed (e.g. strain or position) sensors combined with the robot's mechanics-based model. More recently, given high-fidelity shape data, external interaction loads along the robot have been estimated by solving an inverse problem on the mechanics model of the robot. In this paper, we argue that since shape and force are fundamentally coupled, they should be estimated simultaneously in a statistically principled approach. We accomplish this by applying continuous-time batch estimation directly to the arclength domain. A general continuum robot model serves as a statistical prior which is fused with discrete, noisy measurements taken along the robot's backbone. The result is a continuous posterior containing both shape and load functions of arclength, as well as their uncertainties. We first test the approach with a Cosserat rod, i.e. the underlying modeling framework that is the basis for a variety of continuum robots. We verify our approach numerically using distributed loads with various sensor combinations. Next, we experimentally validate shape and external load errors for highly concentrated force distributions (point loads). Finally, we apply the approach to a tendon-actuated continuum robot demonstrating applicability to more complex actuated robots.

摘要

连续体机器人能够在狭窄、蜿蜒的通道中导航,同时安全且柔顺地与周围环境相互作用。在这些条件下,通常通过使用一些分布稀疏(如应变或位置)的传感器并结合基于机器人力学模型的方式来间接感知机器人的形状。最近,在获得高保真形状数据的情况下,通过求解机器人力学模型上的反问题来估计沿机器人的外部相互作用载荷。在本文中,我们认为由于形状和力在根本上是相互耦合的,因此应该以一种统计原则的方法同时对它们进行估计。我们通过将连续时间批量估计直接应用于弧长域来实现这一点。一个通用的连续体机器人模型作为统计先验,与沿机器人主干获取的离散噪声测量数据相融合。结果是一个包含弧长的形状和载荷函数及其不确定性的连续后验。我们首先用柯塞尔杆对该方法进行测试,柯塞尔杆是多种连续体机器人所基于的基础建模框架。我们使用各种传感器组合的分布式载荷通过数值方法验证了我们的方法。接下来,我们通过实验验证了高集中力分布(点载荷)情况下的形状和外部载荷误差。最后,我们将该方法应用于一个肌腱驱动的连续体机器人,证明了其对更复杂驱动机器人的适用性。

相似文献

4
Sensing of Continuum Robots: A Review.连续体机器人传感:综述
Sensors (Basel). 2024 Feb 18;24(4):1311. doi: 10.3390/s24041311.
5
Unified Robot and Inertial Sensor Self-Calibration.统一的机器人与惯性传感器自校准
Robotica. 2023 May;41(5):1590-1616. doi: 10.1017/s0263574723000012. Epub 2023 Feb 16.
9
Stiffness Control of Surgical Continuum Manipulators.手术连续体操纵器的刚度控制
IEEE Trans Robot. 2011 Apr;27(2). doi: 10.1109/TRO.2011.2105410.

本文引用的文献

7
Modeling and estimation of tip contact force for steerable ablation catheters.可转向消融导管尖端接触力的建模与估计
IEEE Trans Biomed Eng. 2015 May;62(5):1404-15. doi: 10.1109/TBME.2015.2389615. Epub 2015 Jan 9.
8
Stiffness Control of Surgical Continuum Manipulators.手术连续体操纵器的刚度控制
IEEE Trans Robot. 2011 Apr;27(2). doi: 10.1109/TRO.2011.2105410.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验