Ferguson James M, Rucker D Caleb, Webster Robert J
Vanderbilt University, Nashville, TN 37235, USA.
The University of Tennessee, Knoxville, TN 37996, USA.
IEEE Trans Robot. 2024;40:1813-1827. doi: 10.1109/tro.2024.3360950. Epub 2024 Feb 1.
Continuum robots navigate narrow, winding passageways while safely and compliantly interacting with their environments. Sensing the robot's shape under these conditions is often done indirectly, using a few coarsely distributed (e.g. strain or position) sensors combined with the robot's mechanics-based model. More recently, given high-fidelity shape data, external interaction loads along the robot have been estimated by solving an inverse problem on the mechanics model of the robot. In this paper, we argue that since shape and force are fundamentally coupled, they should be estimated simultaneously in a statistically principled approach. We accomplish this by applying continuous-time batch estimation directly to the arclength domain. A general continuum robot model serves as a statistical prior which is fused with discrete, noisy measurements taken along the robot's backbone. The result is a continuous posterior containing both shape and load functions of arclength, as well as their uncertainties. We first test the approach with a Cosserat rod, i.e. the underlying modeling framework that is the basis for a variety of continuum robots. We verify our approach numerically using distributed loads with various sensor combinations. Next, we experimentally validate shape and external load errors for highly concentrated force distributions (point loads). Finally, we apply the approach to a tendon-actuated continuum robot demonstrating applicability to more complex actuated robots.
连续体机器人能够在狭窄、蜿蜒的通道中导航,同时安全且柔顺地与周围环境相互作用。在这些条件下,通常通过使用一些分布稀疏(如应变或位置)的传感器并结合基于机器人力学模型的方式来间接感知机器人的形状。最近,在获得高保真形状数据的情况下,通过求解机器人力学模型上的反问题来估计沿机器人的外部相互作用载荷。在本文中,我们认为由于形状和力在根本上是相互耦合的,因此应该以一种统计原则的方法同时对它们进行估计。我们通过将连续时间批量估计直接应用于弧长域来实现这一点。一个通用的连续体机器人模型作为统计先验,与沿机器人主干获取的离散噪声测量数据相融合。结果是一个包含弧长的形状和载荷函数及其不确定性的连续后验。我们首先用柯塞尔杆对该方法进行测试,柯塞尔杆是多种连续体机器人所基于的基础建模框架。我们使用各种传感器组合的分布式载荷通过数值方法验证了我们的方法。接下来,我们通过实验验证了高集中力分布(点载荷)情况下的形状和外部载荷误差。最后,我们将该方法应用于一个肌腱驱动的连续体机器人,证明了其对更复杂驱动机器人的适用性。