Suppr超能文献

用于生成交叉极化图像并分析皮肤黑色素和血红蛋白分布的集成深度学习方法。

Integrated deep learning approach for generating cross-polarized images and analyzing skin melanin and hemoglobin distributions.

作者信息

Jung Geunho, Lee Jongha, Kim Semin

机构信息

AI R&D center, lululab Inc., Seoul, 06054 Republic of Korea.

出版信息

Biomed Eng Lett. 2024 Jul 26;14(6):1355-1364. doi: 10.1007/s13534-024-00409-9. eCollection 2024 Nov.

Abstract

Cross-polarized images are beneficial for skin pigment analysis due to the enhanced visualization of melanin and hemoglobin regions. However, the required imaging equipment can be bulky and optically complex. Additionally, preparing ground truths for training pigment analysis models is labor-intensive. This study aims to introduce an integrated approach for generating cross-polarized images and creating skin melanin and hemoglobin maps without the need for ground truth preparation for pigment distributions. We propose a two-component approach: a cross-polarized image generation module and a skin analysis module. Three generative adversarial networks (CycleGAN, pix2pix, and pix2pixHD) are compared for creating cross-polarized images. The regression analysis network for skin analysis is trained with theoretically reconstructed ground truths based on the optical properties of pigments. The methodology is evaluated using the VISIA VAESTRO clinical system. The cross-polarized image generation module achieved a peak signal-to-noise ratio of 35.514 dB. The skin analysis module demonstrated correlation coefficients of 0.942 for hemoglobin and 0.922 for melanin. The integrated approach yielded correlation coefficients of 0.923 for hemoglobin and 0.897 for melanin, respectively. The proposed approach achieved a reasonable correlation with the professional system using actually captured images, offering a promising alternative to existing professional equipment without the need for additional optical instruments or extensive ground truth preparation.

摘要

交叉极化图像由于能增强黑色素和血红蛋白区域的可视化效果,因此对皮肤色素分析有益。然而,所需的成像设备可能体积庞大且光学结构复杂。此外,为训练色素分析模型准备地面真值是一项劳动密集型工作。本研究旨在引入一种综合方法,用于生成交叉极化图像并创建皮肤黑色素和血红蛋白图谱,而无需为色素分布准备地面真值。我们提出了一种由两部分组成的方法:一个交叉极化图像生成模块和一个皮肤分析模块。比较了三种生成对抗网络(CycleGAN、pix2pix和pix2pixHD)用于创建交叉极化图像。用于皮肤分析的回归分析网络基于色素的光学特性,使用理论重建的地面真值进行训练。使用VISIA VAESTRO临床系统对该方法进行评估。交叉极化图像生成模块的峰值信噪比达到35.514 dB。皮肤分析模块的血红蛋白相关系数为0.942,黑色素相关系数为0.922。该综合方法得到的血红蛋白相关系数为0.923,黑色素相关系数为0.897。所提出的方法使用实际拍摄的图像与专业系统实现了合理的相关性,为现有专业设备提供了一种有前景的替代方案,无需额外的光学仪器或大量的地面真值准备。

相似文献

本文引用的文献

7
A deep learning system for differential diagnosis of skin diseases.深度学习系统用于皮肤病的鉴别诊断。
Nat Med. 2020 Jun;26(6):900-908. doi: 10.1038/s41591-020-0842-3. Epub 2020 May 18.
8
The Role of Stem Cell Factor in Hyperpigmented Skin Lesions.干细胞因子在色素沉着性皮肤病变中的作用。
Asian Pac J Cancer Prev. 2019 Dec 1;20(12):3723-3728. doi: 10.31557/APJCP.2019.20.12.3723.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验