Suppr超能文献

使用简单网络在运动预测中实现视距和视角不变性。

Achieving view-distance and -angle invariance in motion prediction using a simple network.

作者信息

Zhao Haichuan, Ru Xudong, Du Peng, Liu Shaolong, Liu Na, Wang Xingce, Wu Zhongke

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China.

School of Arts and Communication, Beijing Normal University, Beijing, 100875, China.

出版信息

Vis Comput Ind Biomed Art. 2024 Oct 28;7(1):26. doi: 10.1186/s42492-024-00176-5.

Abstract

Recently, human motion prediction has gained significant attention and achieved notable success. However, current methods primarily rely on training and testing with ideal datasets, overlooking the impact of variations in the viewing distance and viewing angle, which are commonly encountered in practical scenarios. In this study, we address the issue of model invariance by ensuring robust performance despite variations in view distances and angles. To achieve this, we employed Riemannian geometry methods to constrain the learning process of neural networks, enabling the prediction of invariances using a simple network. Furthermore, this enhances the application of motion prediction in various scenarios. Our framework uses Riemannian geometry to encode motion into a novel motion space to achieve prediction with an invariant viewing distance and angle using a simple network. Specifically, the specified path transport square-root velocity function is proposed to aid in removing the view-angle equivalence class and encode motion sequences into a flattened space. Motion coding by the geometry method linearizes the optimization problem in a non-flattened space and effectively extracts motion information, allowing the proposed method to achieve competitive performance using a simple network. Experimental results on Human 3.6M and CMU MoCap demonstrate that the proposed framework has competitive performance and invariance to the viewing distance and viewing angle.

摘要

近年来,人体运动预测受到了广泛关注并取得了显著成果。然而,目前的方法主要依赖于在理想数据集上进行训练和测试,忽略了实际场景中常见的观看距离和视角变化的影响。在本研究中,我们通过确保在不同观看距离和视角变化下仍具有稳健性能来解决模型不变性问题。为实现这一目标,我们采用黎曼几何方法来约束神经网络的学习过程,从而能够使用简单网络预测不变性。此外,这增强了运动预测在各种场景中的应用。我们的框架使用黎曼几何将运动编码到一个新颖的运动空间中,以便使用简单网络实现具有不变观看距离和视角的预测。具体而言,提出了特定的路径传输平方根速度函数,以帮助消除视角等价类并将运动序列编码到一个扁平空间中。通过几何方法进行的运动编码使非扁平空间中的优化问题线性化,并有效地提取运动信息,从而使所提出的方法能够使用简单网络实现具有竞争力的性能。在Human 3.6M和CMU MoCap上的实验结果表明,所提出的框架具有竞争力的性能以及对观看距离和视角的不变性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f694/11519277/57c46a743866/42492_2024_176_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验