Shen Jianan, Quigley Lizabeth, Barnard James P, Lu Ping, Tsai Benson Kunhung, Zemlyanov Dmitry, Zhang Yizhi, Sheng Xuanyu, Gan Jeremy, Moceri Matteo, Hu Zedong, Huang Jialong, Shen Chao, Deitz Julia, Zhang Xinghang, Wang Haiyan
School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States.
Sandia National Laboratory, Albuquerque, New Mexico, 87185, United States.
Small Methods. 2025 Apr;9(4):e2401148. doi: 10.1002/smtd.202401148. Epub 2024 Oct 28.
Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high-quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO (STO), MgO, LaAlO, a-AlO and many others. Recent successes in transferring these complex oxides as free-standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost-effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high-resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre-strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (YFeO) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high-quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.
复合氧化物薄膜具有一系列对于逻辑、存储和光学器件至关重要的物理特性和多功能性。通常,这些复合氧化物薄膜的高质量外延生长需要单晶氧化物衬底,如SrTiO(STO)、MgO、LaAlO、α-AlO等。最近将这些复合氧化物作为独立薄膜转移的成功不仅为将复合氧化物集成到其他器件中提供了巨大机遇,还为转移后回收沉积衬底以实现复合氧化物薄膜的经济高效且可持续加工带来了巨大机遇。在这项工作中,研究了在回收的STO上引入的表面改性效果,并评估了它们对随后生长的外延氧化物薄膜的微观结构和性能的影响,并与在原始衬底上生长的薄膜进行了比较。使用高分辨率扫描透射电子显微镜和几何相位分析的详细分析表明,回收的STO表面与原始衬底相比存在明显不同的应变状态,这表明由于先前的沉积层,回收的STO衬底中存在预应变状态。这些发现为在回收的STO衬底上生长具有增强物理性能的高度失配氧化物薄膜提供了机遇。具体而言,在回收的STO上生长的钇铁石榴石(YFeO)薄膜与在原始衬底上生长的薄膜相比呈现出不同的铁磁响应,突出了表面改性的效果。该研究证明了使用回收衬底进行再利用和再沉积的可行性。通过仔细处理和制备,可以在回收衬底上生长出具有可比甚至更好的结构和物理性能的高质量外延薄膜,以实现复合氧化物器件的可持续加工。