文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习方法对急性肾损伤的理解:当前趋势和未来方向。

Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions.

机构信息

Department of Medical Informatics, College of Medicine, Korea University, Seoul, Korea.

Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.

出版信息

Korean J Intern Med. 2024 Nov;39(6):882-897. doi: 10.3904/kjim.2024.098. Epub 2024 Oct 29.


DOI:10.3904/kjim.2024.098
PMID:39468926
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11569930/
Abstract

Acute kidney injury (AKI) is a significant health challenge associated with adverse patient outcomes and substantial economic burdens. Many authors have sought to prevent and predict AKI. Here, we comprehensively review recent advances in the use of artificial intelligence (AI) to predict AKI, and the associated challenges. Although AI may detect AKI early and predict prognosis, integration of AI-based systems into clinical practice remains challenging. It is difficult to identify AKI patients using retrospective data; information preprocessing and the limitations of existing models pose problems. It is essential to embrace standardized labeling criteria and to form international multi-institutional collaborations that foster high-quality data collection. Additionally, existing constraints on the deployment of evolving AI technologies in real-world healthcare settings and enhancement of the reliabilities of AI outputs are crucial. Such efforts will improve the clinical applicability, performance, and reliability of AKI Clinical Support Systems, ultimately enhancing patient prognoses.

摘要

急性肾损伤(AKI)是一个重大的健康挑战,与不良的患者预后和巨大的经济负担相关。许多作者都试图预防和预测 AKI。在这里,我们全面回顾了最近在使用人工智能(AI)预测 AKI 方面的进展,以及相关的挑战。虽然 AI 可以早期检测 AKI 并预测预后,但将基于 AI 的系统整合到临床实践中仍然具有挑战性。使用回顾性数据识别 AKI 患者具有一定难度;信息预处理和现有模型的局限性带来了问题。采用标准化的标记标准,并形成国际多机构合作,促进高质量的数据收集,这一点至关重要。此外,在现实医疗环境中部署不断发展的 AI 技术和提高 AI 输出的可靠性方面存在的限制也是至关重要的。这些努力将提高 AKI 临床支持系统的临床适用性、性能和可靠性,最终改善患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/0e329ad14126/kjim-2024-098f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/62d8a943467a/kjim-2024-098f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/fe26985599ed/kjim-2024-098f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/832b95f1f247/kjim-2024-098f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/e6fc64c4b83d/kjim-2024-098f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/c579617531d6/kjim-2024-098f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/faff91fc91a7/kjim-2024-098f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/af5faf2b67a4/kjim-2024-098f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/0e329ad14126/kjim-2024-098f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/62d8a943467a/kjim-2024-098f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/fe26985599ed/kjim-2024-098f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/832b95f1f247/kjim-2024-098f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/e6fc64c4b83d/kjim-2024-098f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/c579617531d6/kjim-2024-098f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/faff91fc91a7/kjim-2024-098f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/af5faf2b67a4/kjim-2024-098f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/11569930/0e329ad14126/kjim-2024-098f8.jpg

相似文献

[1]
Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions.

Korean J Intern Med. 2024-11

[2]
Exploring the role of Artificial Intelligence in Acute Kidney Injury management: a comprehensive review and future research agenda.

BMC Med Inform Decis Mak. 2024-11-14

[3]
Artificial Intelligence in Acute Kidney Injury Prediction.

Adv Chronic Kidney Dis. 2022-9

[4]
Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: current status and future directions.

Pediatr Nephrol. 2024-8

[5]
Artificial Intelligence in Heart Failure and Acute Kidney Injury: Emerging Concepts and Controversial Dimensions.

Cardiorenal Med. 2024

[6]
Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practice.

BMC Nephrol. 2024-10-16

[7]
Advances in critical care nephrology through artificial intelligence.

Curr Opin Crit Care. 2024-12-1

[8]
Artificial Intelligence in Acute Kidney Injury: From Static to Dynamic Models.

Adv Chronic Kidney Dis. 2021-1

[9]
Machine Learning to Assist in Managing Acute Kidney Injury in General Wards: Multicenter Retrospective Study.

J Med Internet Res. 2025-3-18

[10]
[Advances on machine learning applications in sepsis associated-acute kidney injury].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11

引用本文的文献

[1]
Machine Learning to Assist in Managing Acute Kidney Injury in General Wards: Multicenter Retrospective Study.

J Med Internet Res. 2025-3-18

本文引用的文献

[1]
An early warning model to predict acute kidney injury in sepsis patients with prior hypertension.

Heliyon. 2024-1-10

[2]
Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery.

BMC Nephrol. 2023-11-7

[3]
Development and validation of a model to predict acute kidney injury following high-dose methotrexate in patients with lymphoma.

Pharmacotherapy. 2024-1

[4]
Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark.

IEEE Trans Knowl Data Eng. 2022-10

[5]
Machine learning clinical prediction models for acute kidney injury: the impact of baseline creatinine on prediction efficacy.

BMC Med Inform Decis Mak. 2023-10-9

[6]
Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.

BMC Pulm Med. 2023-10-3

[7]
The renal angina index accurately predicts low risk of developing severe acute kidney injury among children admitted to a low-resource pediatric intensive care unit.

Ren Fail. 2023

[8]
Extracorporeal membrane oxygenation and acute kidney injury: a single-center retrospective cohort.

Sci Rep. 2023-9-13

[9]
The new race-free equations for estimating glomerular filtration rate: should they be adopted for Asians?

Kidney Res Clin Pract. 2023-11

[10]
Development of a Machine Learning Model of Postoperative Acute Kidney Injury Using Non-Invasive Time-Sensitive Intraoperative Predictors.

Bioengineering (Basel). 2023-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索