Department of Medical Informatics, College of Medicine, Korea University, Seoul, Korea.
Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
Korean J Intern Med. 2024 Nov;39(6):882-897. doi: 10.3904/kjim.2024.098. Epub 2024 Oct 29.
Acute kidney injury (AKI) is a significant health challenge associated with adverse patient outcomes and substantial economic burdens. Many authors have sought to prevent and predict AKI. Here, we comprehensively review recent advances in the use of artificial intelligence (AI) to predict AKI, and the associated challenges. Although AI may detect AKI early and predict prognosis, integration of AI-based systems into clinical practice remains challenging. It is difficult to identify AKI patients using retrospective data; information preprocessing and the limitations of existing models pose problems. It is essential to embrace standardized labeling criteria and to form international multi-institutional collaborations that foster high-quality data collection. Additionally, existing constraints on the deployment of evolving AI technologies in real-world healthcare settings and enhancement of the reliabilities of AI outputs are crucial. Such efforts will improve the clinical applicability, performance, and reliability of AKI Clinical Support Systems, ultimately enhancing patient prognoses.
急性肾损伤(AKI)是一个重大的健康挑战,与不良的患者预后和巨大的经济负担相关。许多作者都试图预防和预测 AKI。在这里,我们全面回顾了最近在使用人工智能(AI)预测 AKI 方面的进展,以及相关的挑战。虽然 AI 可以早期检测 AKI 并预测预后,但将基于 AI 的系统整合到临床实践中仍然具有挑战性。使用回顾性数据识别 AKI 患者具有一定难度;信息预处理和现有模型的局限性带来了问题。采用标准化的标记标准,并形成国际多机构合作,促进高质量的数据收集,这一点至关重要。此外,在现实医疗环境中部署不断发展的 AI 技术和提高 AI 输出的可靠性方面存在的限制也是至关重要的。这些努力将提高 AKI 临床支持系统的临床适用性、性能和可靠性,最终改善患者的预后。
BMC Med Inform Decis Mak. 2024-11-14
Adv Chronic Kidney Dis. 2022-9
Curr Opin Crit Care. 2024-12-1
Adv Chronic Kidney Dis. 2021-1
J Med Internet Res. 2025-3-18
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11
J Med Internet Res. 2025-3-18
IEEE Trans Knowl Data Eng. 2022-10
BMC Med Inform Decis Mak. 2023-10-9
Kidney Res Clin Pract. 2023-11