文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可解释机器学习模型在心脏手术后急性肾损伤早期预测中的应用。

Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery.

机构信息

Department of Big Data Center for Cardiovascular Disease, Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.

Department of Cardiovascular Surgery, Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

BMC Nephrol. 2023 Nov 7;24(1):326. doi: 10.1186/s12882-023-03324-w.


DOI:10.1186/s12882-023-03324-w
PMID:37936067
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10631004/
Abstract

OBJECTIVE: Postoperative acute kidney injury (PO-AKI) is a common complication after cardiac surgery. We aimed to evaluate whether machine learning algorithms could significantly improve the risk prediction of PO-AKI. METHODS: The retrospective cohort study included 2310 adult patients undergoing cardiac surgery in a tertiary teaching hospital, China. Postoperative AKI and severe AKI were identified by the modified KDIGO definition. The sample was randomly divided into a derivation set and a validation set based on a ratio of 4:1. Exploiting conventional logistic regression (LR) and five ML algorithms including decision tree, random forest, gradient boosting classifier (GBC), Gaussian Naive Bayes and multilayer perceptron, we developed and validated the prediction models of PO-AKI. We implemented the interpretation of models using SHapley Additive exPlanation (SHAP) analysis. RESULTS: Postoperative AKI and severe AKI occurred in 1020 (44.2%) and 286 (12.4%) patients, respectively. Compared with the five ML models, LR model for PO-AKI exhibited the largest AUC (0.812, 95%CI: 0.756, 0.860, all P < 0.05), sensitivity (0.774, 95%CI: 0.719, 0.813), accuracy (0.753, 95%CI: 0.719, 0.781) and Youden index (0.513, 95%CI: 0.451, 0.573). Regarding severe AKI, GBC algorithm showed a significantly higher AUC than the other four ML models (all P < 0.05). Although no significant difference (P = 0.173) was observed in AUCs between GBC (0.86, 95%CI: 0.808, 0.902) and conventional logistic regression (0.803, 95%CI: 0.746, 0.852), GBC achieved greater sensitivity, accuracy and Youden index than conventional LR. Notably, SHAP analyses showed that preoperative serum creatinine, hyperlipidemia, lipid-lowering agents and assisted ventilation time were consistently among the top five important predictors for both postoperative AKI and severe AKI. CONCLUSION: Logistic regression and GBC algorithm demonstrated moderate to good discrimination and superior performance in predicting PO-AKI and severe AKI, respectively. Interpretation of the models identified the key contributors to the predictions, which could potentially inform clinical interventions.

摘要

目的:术后急性肾损伤(PO-AKI)是心脏手术后的常见并发症。本研究旨在评估机器学习算法是否能显著提高 PO-AKI 的风险预测能力。

方法:本回顾性队列研究纳入了在中国一家三级教学医院接受心脏手术的 2310 例成年患者。根据改良 KDIGO 定义,术后 AKI 和重度 AKI 由术后 AKI 和重度 AKI 定义。根据 4:1 的比例,将样本随机分为推导集和验证集。利用传统逻辑回归(LR)和包括决策树、随机森林、梯度提升分类器(GBC)、高斯朴素贝叶斯和多层感知器在内的 5 种 ML 算法,我们开发并验证了 PO-AKI 的预测模型。我们使用 SHapley Additive exPlanation(SHAP)分析对模型进行解释。

结果:术后 AKI 和重度 AKI 分别发生在 1020 例(44.2%)和 286 例(12.4%)患者中。与 5 种 ML 模型相比,LR 模型对 PO-AKI 的 AUC(0.812,95%CI:0.756,0.860,均 P<0.05)、敏感性(0.774,95%CI:0.719,0.813)、准确性(0.753,95%CI:0.719,0.781)和 Youden 指数(0.513,95%CI:0.451,0.573)最大。关于重度 AKI,GBC 算法的 AUC 明显高于其他 4 种 ML 模型(均 P<0.05)。尽管 GBC(0.86,95%CI:0.808,0.902)与传统逻辑回归(0.803,95%CI:0.746,0.852)之间的 AUC 无显著差异(P=0.173),但 GBC 的敏感性、准确性和 Youden 指数均高于传统 LR。值得注意的是,SHAP 分析表明,术前血清肌酐、高血脂、降脂药和辅助通气时间一直是术后 AKI 和重度 AKI 的前 5 个重要预测因素。

结论:逻辑回归和 GBC 算法在预测 PO-AKI 和重度 AKI 方面表现出中等至良好的区分度和较高的性能。模型解释确定了预测的关键因素,这可能有助于指导临床干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/967bd1f4e585/12882_2023_3324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/dd977af70dfa/12882_2023_3324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/7b1640fcf334/12882_2023_3324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/967bd1f4e585/12882_2023_3324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/dd977af70dfa/12882_2023_3324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/7b1640fcf334/12882_2023_3324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/10631004/967bd1f4e585/12882_2023_3324_Fig1_HTML.jpg

相似文献

[1]
Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery.

BMC Nephrol. 2023-11-7

[2]
Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.

J Med Internet Res. 2023-1-5

[3]
Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.

Int J Surg. 2024-5-1

[4]
Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.

Heart Surg Forum. 2023-10-25

[5]
[Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11

[6]
Prediction of the development of acute kidney injury following cardiac surgery by machine learning.

Crit Care. 2020-7-31

[7]
Predictive Accuracy of a Perioperative Laboratory Test-Based Prediction Model for Moderate to Severe Acute Kidney Injury After Cardiac Surgery.

JAMA. 2022-3-8

[8]
An interpretable machine learning model to predict off-pump coronary artery bypass grafting-associated acute kidney injury.

Adv Clin Exp Med. 2024-5

[9]
Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.

Ann Med. 2023

[10]
Predicting pediatric cardiac surgery-associated acute kidney injury using machine learning.

Pediatr Nephrol. 2024-4

引用本文的文献

[1]
pyAKI-An open source solution to automated acute kidney injury classification.

PLoS One. 2025-1-3

[2]
The Systemic Immune Inflammation Index as a Novel Predictive Biomarker for Contrast-Induced Acute Kidney Injury Risk Following Percutaneous Coronary Intervention: A Meta-Analysis of Cohort Studies.

Curr Vasc Pharmacol. 2024-11-5

[3]
Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

Int Urol Nephrol. 2025-3

[4]
Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions.

Korean J Intern Med. 2024-11

[5]
Comparative Analysis of Logistic Regression, Gradient Boosted Trees, SVM, and Random Forest Algorithms for Prediction of Acute Kidney Injury Requiring Dialysis After Cardiac Surgery.

Int J Nephrol Renovasc Dis. 2024-7-24

本文引用的文献

[1]
Predictive Accuracy of a Perioperative Laboratory Test-Based Prediction Model for Moderate to Severe Acute Kidney Injury After Cardiac Surgery.

JAMA. 2022-3-8

[2]
Prediction of the severity of acute kidney injury after on-pump cardiac surgery.

J Clin Anesth. 2022-6

[3]
Individualized prediction for the occurrence of acute kidney injury during the first postoperative week following cardiac surgery.

J Clin Anesth. 2022-5

[4]
Prediction of acute kidney injury after cardiac surgery from preoperative N-terminal pro-B-type natriuretic peptide.

Br J Anaesth. 2021-12

[5]
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance.

NPJ Digit Med. 2020-10-26

[6]
Prediction of the development of acute kidney injury following cardiac surgery by machine learning.

Crit Care. 2020-7-31

[7]
From Local Explanations to Global Understanding with Explainable AI for Trees.

Nat Mach Intell. 2020-1

[8]
A novel machine learning algorithm, Bayesian networks model, to predict the high-risk patients with cardiac surgery-associated acute kidney injury.

Clin Cardiol. 2020-7

[9]
Calculating the sample size required for developing a clinical prediction model.

BMJ. 2020-3-18

[10]
Risk Stratification for Postoperative Acute Kidney Injury in Major Noncardiac Surgery Using Preoperative and Intraoperative Data.

JAMA Netw Open. 2019-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索