Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Med Oncol. 2024 Oct 29;41(12):303. doi: 10.1007/s12032-024-02546-8.
Glioblastoma (GBM) is a highly prevalent and aggressive brain tumor in adults with limited treatment response, leading to a 5-year survival rate of less than 5%. Standard therapies, including surgery, radiation, and chemotherapy, often fall short due to the tumor's location, hypoxic conditions, and the challenge of complete removal. Moreover, brain metastases from cancers such as breast and melanoma carry similarly poor prognoses. Recent advancements in nanomedicine offer promising solutions for targeted GBM therapies, with nanoparticles (NPs) capable of delivering chemotherapy drugs or radiation sensitizers across the blood-brain barrier (BBB) to specific tumor sites. Leveraging the enhanced permeability and retention effect, NPs can preferentially accumulate in tumor tissues, where compromised BBB regions enhance delivery efficiency. By modifying NP characteristics such as size, shape, and surface charge, researchers have improved circulation times and cellular uptake, enhancing therapeutic efficacy. Recent studies show that combining photothermal therapy with magnetic hyperthermia using AuNPs and magnetic NPs induces ROS-dependent apoptosis and immunogenic cell death providing dual-targeted, immune-activating approaches. This review discusses the latest NP-based drug delivery strategies, including gene therapy, receptor-mediated transport, and multi-modal approaches like photothermal-magnetic hyperthermia combinations, all aimed at optimizing therapeutic outcomes for GBM.
胶质母细胞瘤(GBM)是一种在成年人中高度普遍且侵袭性强的脑肿瘤,治疗反应有限,导致 5 年生存率低于 5%。标准疗法,包括手术、放疗和化疗,由于肿瘤的位置、缺氧条件以及完全切除的挑战,往往效果不佳。此外,乳腺癌和黑色素瘤等癌症的脑转移也具有类似的不良预后。纳米医学的最新进展为靶向 GBM 治疗提供了有希望的解决方案,纳米颗粒(NPs)能够通过血脑屏障(BBB)将化疗药物或辐射增敏剂递送到特定的肿瘤部位。利用增强的通透性和保留效应,NPs 可以优先在肿瘤组织中积累,在那里受损的 BBB 区域增强了递送效率。通过改变 NP 的特性,如大小、形状和表面电荷,研究人员提高了循环时间和细胞摄取,增强了治疗效果。最近的研究表明,使用 AuNPs 和磁性 NPs 结合光热疗法和磁热疗可以诱导 ROS 依赖性细胞凋亡和免疫原性细胞死亡,提供双重靶向、免疫激活的方法。这篇综述讨论了最新的基于 NP 的药物输送策略,包括基因治疗、受体介导的运输以及光热-磁热疗组合等多模态方法,所有这些都旨在优化 GBM 的治疗效果。