Suppr超能文献

Partition-Level Tensor Learning-Based Multiview Unsupervised Feature Selection.

作者信息

Cao Zhiwen, Xie Xijiong

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):12799-12811. doi: 10.1109/TNNLS.2024.3482440.

Abstract

Multiview unsupervised feature selection is an emerging direction in the machine learning community because of its ability to identify informative patterns and reduce the dimensionality of multiview data. Although numerous methods have been proposed and shown to be effective, they have some limitations: 1) most existing algorithms fail to improve the model performance along the view dimension; 2) they rarely incorporate more discriminative partition information; and 3) the negative effects of marginal samples are not considered. To solve these problems, we propose a novel method termed as partition-level tensor learning-based multiview unsupervised feature selection (PTFS). The proposed method optimizes a low-rank constrained tensor assembled by the inner product of base partition matrices. By doing so, PTFS simultaneously leverages the high-order view correlation and indirectly integrates discriminative partition information. Besides, a statistic-based adaptive self-paced strategy is introduced to ensure that confident samples are prioritized for training the model. Moreover, an effective alternating optimization method is designed to solve the resulting optimization problem. Extensive experiments on ten datasets demonstrate the effectiveness and efficiency of the proposed method compared to the state-of-the-art methods. The code is available at https://github.com/HdTgon/2023-TNNLS-PTFS.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验