Zhu Longfei, Dluzewska Julia, Fernández-Jiménez Nadia, Ranjan Rajeev, Pelé Alexandre, Dziegielewski Wojciech, Szymanska-Lejman Maja, Hus Karolina, Górna Julia, Pradillo Mónica, Ziolkowski Piotr A
Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland.
Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koae292.
Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity. Crossover is initiated by the formation of programmed DNA double-strand breaks (DSBs). While the role of ATAXIA-TELANGIECTASIA AND RAD3-RELATED (ATR) kinase in DNA damage signaling is well-known, its impact on crossover formation remains understudied. Here, using measurements of recombination at chromosomal intervals and genome-wide crossover mapping, we showed that ATR inactivation in Arabidopsis (Arabidopsis thaliana) leads to dramatic crossover redistribution, with an increase in crossover frequency in chromosome arms and a decrease in pericentromeres. These global changes in crossover placement were not caused by alterations in DSB numbers, which we demonstrated by analyzing phosphorylated H2A.X foci in zygonema. Using the seed-typing technique, we found that hotspot usage remains mainly unchanged in atr mutants compared with wild-type individuals. Moreover, atr showed no change in the number of crossovers caused by two independent pathways, which implies no effect on crossover pathway choice. Analyses of genetic interaction indicate that while the effects of atr are independent of MMS AND UV SENSITIVE81 (MUS81), ZIPPER1 (ZYP1), FANCONI ANEMIA COMPLEMENTATION GROUP M (FANCM), and D2 (FANCD2), the underlying mechanism may be similar between ATR and FANCD2. This study extends our understanding of ATR's role in meiosis, uncovering functions in regulating crossover distribution.
减数分裂交换,即在减数分裂过程中染色体片段的相互交换,是遗传多样性的关键驱动因素。交换由程序性DNA双链断裂(DSB)的形成引发。虽然共济失调毛细血管扩张症和RAD3相关(ATR)激酶在DNA损伤信号传导中的作用已广为人知,但其对交换形成的影响仍研究不足。在这里,通过对染色体区间重组的测量和全基因组交换图谱分析,我们表明拟南芥中ATR失活会导致交换分布发生显著重排,染色体臂上的交换频率增加,着丝粒周围减少。这些交换位置的全局变化并非由DSB数量的改变引起,我们通过分析合线期磷酸化H2A.X焦点证明了这一点。使用种子分型技术,我们发现与野生型个体相比,atr突变体中热点使用情况基本保持不变。此外,atr在由两条独立途径引起的交换数量上没有变化,这意味着对交换途径选择没有影响。遗传相互作用分析表明,虽然atr的作用独立于MMS和UV敏感81(MUS81)、拉链1(ZYP1)、范可尼贫血互补组M(FANCM)和D2(FANCD2),但ATR和FANCD2之间的潜在机制可能相似。这项研究扩展了我们对ATR在减数分裂中作用的理解,揭示了其在调节交换分布方面的功能。