Suppr超能文献

结合脑磁图和临床特征以识别具有中央颞区棘波的非典型自限性癫痫。

Combination of magnetoencephalographic and clinical features to identify atypical self-limited epilepsy with centrotemporal spikes.

作者信息

Li Yihan, Wang Yingfan, Xu Fengyuan, Jiang Teng, Wang Xiaoshan

机构信息

Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 Jiangsu, China; Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China.

Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China.

出版信息

Epilepsy Behav. 2024 Dec;161:110095. doi: 10.1016/j.yebeh.2024.110095. Epub 2024 Oct 30.

Abstract

INTRODUCTION

Our aim was to use magnetoencephalography (MEG) and clinical features to early identify self-limited epilepsy with centrotemporal spikes (SeLECTS) patients who evolve into atypical SeLECTS (AS).

METHODS

The baseline clinical and MEG data of 28 AS and 33 typical SeLECTS (TS) patients were collected. Based on the triple-network model, MEG analysis included power spectral density representing spectral power and corrected amplitude envelope correlation representing functional connectivity (FC). Based on the clinical and MEG features of AS patients, the linear support vector machine (SVM) classifier was used to construct the prediction model.

RESULTS

The spectral power transferred from the alpha band to the delta band in the bilateral posterior cingulate cortex, and the inactivation of the beta band in both the right anterior cingulate cortex and left middle frontal gyrus were distinctive features of the AS group. The FC network in the AS group was characterized by attenuated intrinsic FC within the salience network in the alpha band, as well as attenuated FC interactions between the salience network and both the default mode network and central executive network in the beta band. The prediction model that integrated MEG and clinical features had a high prediction efficiency, with an accuracy of 0.80 and an AUC of 0.84.

CONCLUSION

The triple-network model of early AS patients has band-dependent MEG alterations. These MEG features combined with clinical features can efficiently predict AS at an early stage.

摘要

引言

我们的目的是利用脑磁图(MEG)和临床特征,早期识别进展为非典型中央颞区棘波自限性癫痫(AS)的中央颞区棘波自限性癫痫(SeLECTS)患者。

方法

收集28例AS患者和33例典型SeLECTS(TS)患者的基线临床和MEG数据。基于三重网络模型,MEG分析包括代表频谱功率的功率谱密度和代表功能连接性(FC)的校正幅度包络相关性。基于AS患者的临床和MEG特征,使用线性支持向量机(SVM)分类器构建预测模型。

结果

双侧后扣带回皮质频谱功率从α波段转移至δ波段,右侧前扣带回皮质和左侧额中回β波段失活是AS组的显著特征。AS组的FC网络特征为α波段显著网络内固有FC减弱,以及β波段显著网络与默认模式网络和中央执行网络之间的FC相互作用减弱。整合MEG和临床特征的预测模型具有较高的预测效率,准确率为0.80,曲线下面积(AUC)为0.84。

结论

早期AS患者的三重网络模型存在波段依赖性MEG改变。这些MEG特征与临床特征相结合可在早期有效预测AS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验