Liu Yanhua, Luo Wang, Li Xiangchen, Liu Min
College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
Sichuan Cancer Hospital, Chengdu, 610041, China.
Med Biol Eng Comput. 2025 Mar;63(3):733-747. doi: 10.1007/s11517-024-03231-8. Epub 2024 Oct 30.
Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .
放射治疗被公认为鼻咽癌(NPC)的主要治疗方法。快速准确的剂量预测对于提高放射治疗计划的质量和效率至关重要。然而,当前基于二维架构的剂量预测模型无法有效学习切片之间的空间信息。尽管一些研究通过三维架构探索了合并切片间特征,但医学图像各向异性的分辨率特性显著限制了预测性能。为了解决这些问题,我们提出了一种基于二维和三维混合卷积的新型可变形剂量预测网络用于鼻咽癌放射治疗。具体而言,所提出的模型创新性地结合了基于二维和三维混合卷积的2.5D架构,并有效利用各向异性分辨率内的方向信息来实现跨尺度特征提取。此外,将可变形卷积引入模型以增强感受野并有效处理多尺度空间变换。为了提高通道相关性并减少冗余特征,我们设计了一个残差可变形挤压与激励模块。我们在一个内部数据集上进行了广泛的实验,结果表明所提出的模型在大多数剂量学标准上优于其他现有方法。所提出的模型在鼻咽癌放射治疗中具有卓越的剂量预测性能,对于协助物理学家优化治疗计划和提高放射治疗计划的标准化具有重要的临床意义。源代码可在https://github.com/CDUTJ102/2.5D-Deformable-UNet获取。