基于深度学习的鼻咽癌放射治疗剂量分布预测:一项纳入多种特征(包括图像、结构和剂量学)的初步研究。
Deep Learning-Based Prediction of Radiation Therapy Dose Distributions in Nasopharyngeal Carcinomas: A Preliminary Study Incorporating Multiple Features Including Images, Structures, and Dosimetry.
机构信息
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
出版信息
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241256594. doi: 10.1177/15330338241256594.
Intensity-modulated radiotherapy (IMRT) is currently the most important treatment method for nasopharyngeal carcinoma (NPC). This study aimed to enhance prediction accuracy by incorporating dose information into a deep convolutional neural network (CNN) using a multichannel input method. A target conformal plan (TCP) was created based on the maximum planning target volume (PTV). Input data included TCP dose distribution, images, target structures, and organ-at-risk (OAR) information. The role of target conformal plan dose (TCPD) was assessed by comparing the TCPD-CNN (with dose information) and NonTCPD-CNN models (without dose information) using statistical analyses with the ranked Wilcoxon test ( < .05 considered significant). The TCPD-CNN model showed no statistical differences in predicted target indices, except for PTV60, where differences in the D98% indicator were < 0.5%. For OARs, there were no significant differences in predicted results, except for some small-volume or closely located OARs. On comparing TCPD-CNN and NonTCPD-CNN models, TCPD-CNN's dose-volume histograms closely resembled clinical plans with higher similarity index. Mean dose differences for target structures (predicted TCPD-CNN and NonTCPD-CNN results) were within 3% of the maximum prescription dose for both models. TCPD-CNN and NonTCPD-CNN outcomes were 67.9% and 54.2%, respectively. 3D gamma pass rates of the target structures and the entire body were higher in TCPD-CNN than in the NonTCPD-CNN models ( < .05). Additional evaluation on previously unseen volumetric modulated arc therapy plans revealed that average 3D gamma pass rates of the target structures were larger than 90%. This study presents a novel framework for dose distribution prediction using deep learning and multichannel input, specifically incorporating TCPD information, enhancing prediction accuracy for IMRT in NPC treatment.
调强放疗(IMRT)是目前治疗鼻咽癌(NPC)的最重要方法。本研究旨在通过使用多通道输入方法将剂量信息纳入深度卷积神经网络(CNN),从而提高预测准确性。根据最大计划靶区(PTV)创建目标适形计划(TCP)。输入数据包括 TCP 剂量分布、图像、靶区结构和危及器官(OAR)信息。通过使用排名 Wilcoxon 检验进行统计分析,比较 TCPD-CNN(具有剂量信息)和 NonTCPD-CNN 模型(无剂量信息),评估目标适形计划剂量(TCPD)的作用( < .05 被认为有统计学意义)。TCPD-CNN 模型在预测靶区指标方面没有统计学差异,除了 PTV60 中 D98%指标的差异 < 0.5%。对于 OAR,除了一些小体积或紧密相邻的 OAR 外,预测结果没有显著差异。在比较 TCPD-CNN 和 NonTCPD-CNN 模型时,TCPD-CNN 的剂量-体积直方图与临床计划非常相似,相似度指数更高。两种模型中,靶区结构的平均剂量差异(预测 TCPD-CNN 和 NonTCPD-CNN 结果)均在 3%以内,最大处方剂量。TCPD-CNN 和 NonTCPD-CNN 的结果分别为 67.9%和 54.2%。靶区结构和整个身体的 3D 伽马通过率在 TCPD-CNN 中均高于 NonTCPD-CNN 模型( < .05)。对以前未见的容积调强弧形治疗计划的额外评估显示,靶区结构的平均 3D 伽马通过率大于 90%。本研究提出了一种使用深度学习和多通道输入,特别是纳入 TCPD 信息,提高鼻咽癌调强放疗预测准确性的新框架。