Li Zhiheng, Mao Xin, Feng Desheng, Li Mengran, Xu Xiaoyong, Luo Yadan, Zhuang Linzhou, Lin Rijia, Zhu Tianjiu, Liang Fengli, Huang Zi, Liu Dong, Yan Zifeng, Du Aijun, Shao Zongping, Zhu Zhonghua
School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
Nat Commun. 2024 Oct 29;15(1):9318. doi: 10.1038/s41467-024-53578-7.
Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures. We then provide a machine learning-guided route for developing oxygen electrocatalysts suitable for operation at different temperatures with time efficiency and good prediction accuracy.
对于从室温碱性水电解到高温陶瓷燃料电池等新兴电化学能源系统的发展而言,高效催化剂对于加速缓慢的氧反应动力学至关重要。在这项工作中,我们揭示了阳离子诱导相互作用在不同温度下预先确定235种钴基和200种铁基钙钛矿催化剂氧空位浓度方面的作用,并且这种趋势可以通过基于阳离子晶格环境的机器学习技术很好地预测,无需大量的计算和实验投入。我们的结果进一步表明,钙钛矿的催化活性与其氧空位浓度和操作温度密切相关。然后,我们提供了一条机器学习指导的途径,用于开发适用于不同温度操作的氧电催化剂,具有时间效率和良好的预测准确性。