Jablonka Kevin Maik, Ongari Daniele, Moosavi Seyed Mohamad, Smit Berend
Laboratory of Molecular Simulation, Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
Nat Chem. 2021 Aug;13(8):771-777. doi: 10.1038/s41557-021-00717-y. Epub 2021 Jul 5.
Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal-organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal-organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool.
了解化合物和材料中金属中心的氧化态有助于理解它们的化学键和性质。化学家们已经开发出基于电子计数规则来预测氧化态的理论,但这些理论可能无法描述诸如金属有机框架等扩展晶体系统中的氧化态。在此,我们提出使用一种机器学习模型,该模型基于剑桥结构数据库中化学名称所编码的化学家的赋值进行训练,以自动为金属有机框架中的金属离子分配氧化态。在我们的方法中,仅考虑金属中心周围的直接局部环境。我们表明,该策略对于诸如不正确的质子化、未结合的溶剂或键长变化等实验不确定性具有鲁棒性。此方法具有良好的准确性,并且我们表明它可用于检测剑桥结构数据库中的错误赋值,说明了机器学习如何能够捕捉集体知识并将其转化为有用的工具。