Zn/Pt 双位点单原子驱动的双重功能叠加增强声敏剂用于声动力学治疗增强癌症的铁死亡。

Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer.

机构信息

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.

University of Science and Technology of China, 230026, Hefei, China.

出版信息

Nat Commun. 2024 Oct 29;15(1):9359. doi: 10.1038/s41467-024-53488-8.

Abstract

Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e) and hole (h) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.

摘要

声动力学疗法(SDT)作为一种非侵入性的抗肿瘤策略受到了广泛关注。然而,传统无机半导体声敏剂在超声(US)刺激下电子(e)和空穴(h)的快速复合极大地限制了活性氧(ROS)的产生。在此,我们报道了一种独特的 Zn/Pt 双位点单原子驱动的双重功能叠加增强型 TiO2 基声敏剂(Zn/Pt SATs)。首先,我们通过理论计算验证,在 US 作用下,强耦合的 Zn 和 Pt 原子可以分别通过增加电子导电性和激发效率,在原子水平上协助电子激发,从而有效地提高 ROS 的产率。此外,Zn/Pt SATs 可以通过在 US 刺激下产生更多的 ROS 和声激发空穴来显著增强铁死亡。因此,双位点单原子体系的建立代表了增强女性小鼠肿瘤模型中 SDT 的一种创新策略,并为抗肿瘤治疗领域无机声敏剂的发展提供了一个典型范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8102/11522694/e2c042ee51c4/41467_2024_53488_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索