Zhu Yang, Wang Dengliang, Du Chengzhong, Wu Tiantian, Wei Penghui, Zheng Hongjia, Li Guanting, Zheng ShunZhe, Su Lichao, Yan Lingjun, Hu Yongrui, Wang Huimin, Lin Lisen, Ding Chenyu, Chen Xiaoyuan
Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China.
Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China.
Adv Sci (Weinh). 2025 Jun;12(22):e2416997. doi: 10.1002/advs.202416997. Epub 2025 Apr 25.
Sonodynamic therapy (SDT) has emerged as a promising noninvasive approach for tumor therapy. However, the effectiveness of traditional inorganic semiconductor sonosensitizers is hindered by rapid electron (e) and hole (h) recombination under ultrasonic (US) stimulation, as well as the hypoxic and reductive conditions of tumor microenvironment (TME), which limit the generation of reactive oxygen species (ROS). Herein, a ruthenium (Ru) single-atom nanozyme-driven superimposition-enhanced titanium dioxide-based sonosensitizer (Ru/TiO SAE) is presented that features sufficient oxygen vacancies and high e/h separation efficiency. Through synchrotron radiation-based X-ray absorption spectroscopy and extended X-ray absorption fine structure analysis it is confirmed that oxygen vacancies in TiO nanoparticles promote the immobilization of single-atomic Ru, forming Ru-O₄ active sites. Density functional theory calculations demonstrate that oxygen vacancies alter the electronic structure of nanosensitizer, enhanced e/h separation, increasing oxygen adsorption, and accelerating reaction kinetics under US stimulation, ultimately improving ROS production. Moreover, Ru/TiO SAE boosts sonodynamic efficacy by mitigating the hypoxic and reductive TME. This is attributed to its catalase- and glutathione peroxidase 4-like activities, which facilitate the generation of ROS and trigger lipid peroxidation-mediated ferroptosis. These findings highlight the innovative role of single-atom Ru in optimizing sonosensitizers for SDT-induced ferroptosis, demonstrating its potential for advancing cancer therapy.
声动力疗法(SDT)已成为一种很有前景的肿瘤无创治疗方法。然而,传统无机半导体声敏剂的有效性受到超声(US)刺激下电子(e)和空穴(h)快速复合以及肿瘤微环境(TME)的缺氧和还原条件的阻碍,这限制了活性氧(ROS)的产生。在此,我们提出了一种钌(Ru)单原子纳米酶驱动的叠加增强型二氧化钛基声敏剂(Ru/TiO SAE),其具有充足的氧空位和高的e/h分离效率。通过基于同步辐射的X射线吸收光谱和扩展X射线吸收精细结构分析,证实了TiO纳米颗粒中的氧空位促进了单原子Ru的固定,形成了Ru-O₄活性位点。密度泛函理论计算表明,氧空位改变了纳米敏化剂的电子结构,增强了e/h分离,增加了氧吸附,并加速了US刺激下的反应动力学,最终提高了ROS的产生。此外,Ru/TiO SAE通过减轻缺氧和还原的TME提高了声动力疗效。这归因于其过氧化氢酶和谷胱甘肽过氧化物酶4样活性,它们促进了ROS的产生并触发了脂质过氧化介导的铁死亡。这些发现突出了单原子Ru在优化用于SDT诱导铁死亡的声敏剂方面的创新作用,证明了其在推进癌症治疗方面的潜力。
ACS Appl Mater Interfaces. 2025-6-11
Colloids Surf B Biointerfaces. 2024-12
Oncol Rev. 2025-7-21
J Nanobiotechnology. 2025-7-30
Nat Rev Drug Discov. 2024-8
Angew Chem Int Ed Engl. 2024-4-24