Department of Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
Cancer Research Institute Ghent (CRIG), Medical Research Building 2 (MRB2) - UZ Gent - Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Sci Rep. 2024 Oct 29;14(1):26026. doi: 10.1038/s41598-024-76982-x.
Transcriptomic profiling of blood immune cells offers a promising alternative to invasive, sampling bias-prone tissue-based biomarker assays for predicting immune checkpoint inhibitor (ICI) therapy response in non-small cell lung cancer (NSCLC) patients. However, the optimal analytical approach to identify systemic correlates of response still needs to be explored. We collected peripheral blood mononuclear cells and whole blood (WB) samples from 33 ICI-treated NSCLC patients before ICI treatment and at the first response evaluation. After bulk polyadenylated RNA-sequencing, we assessed differences in gene expression profiles between non-responders and responders using differential expression analysis, single sample gene set enrichment analysis (ssGSEA), and cell type deconvolution. We evaluated gene expression values, ssGSEA scores, and deconvolved cell type proportions to distinguish non-responders from responders via ROC curve (AUC) analysis, training a logistic regression classification model. Gene expression values and deconvolved proportions yielded the best results with WB samples after treatment (AUC = 0.87 and 0.85, respectively). Overall, ssGSEA scores showed superior classification performance across all sample types and timepoints (AUC > 0.7). In conclusion, transcriptomic analysis through ssGSEA demonstrated the best performance as a non-invasive biomarker for predicting clinical benefit in ICI-treated NSCLC patients, with gene expression and deconvolution on post-treatment WB samples also showing promising results.
对血液免疫细胞进行转录组谱分析,为预测非小细胞肺癌(NSCLC)患者免疫检查点抑制剂(ICI)治疗反应提供了一种有前途的替代方法,这种方法不会采用有侵入性且易受取样偏差影响的基于组织的生物标志物检测方法。然而,仍需要探索确定反应系统相关性的最佳分析方法。我们收集了 33 名接受 ICI 治疗的 NSCLC 患者在 ICI 治疗前和首次反应评估时的外周血单核细胞和全血(WB)样本。经过批量多聚腺苷酸化 RNA 测序,我们使用差异表达分析、单样本基因集富集分析(ssGSEA)和细胞类型去卷积,评估了无应答者和应答者之间的基因表达谱差异。我们通过 ROC 曲线(AUC)分析评估基因表达值、ssGSEA 评分和去卷积的细胞类型比例,以区分无应答者和应答者,同时训练逻辑回归分类模型。在治疗后(AUC 值分别为 0.87 和 0.85),WB 样本的基因表达值和去卷积比例的结果最佳。总的来说,ssGSEA 评分在所有样本类型和时间点上均表现出更好的分类性能(AUC > 0.7)。总之,通过 ssGSEA 进行转录组分析,作为一种预测 ICI 治疗 NSCLC 患者临床获益的非侵入性生物标志物,具有最佳的性能,基因表达和治疗后 WB 样本的去卷积也显示出有前途的结果。